Loading…
Computer Simulation of the Ion Escape from High-Energy Electron Tracks in Nonpolar Liquids
The number of ions escaping from recombination in high-energy electron tracks in saturated hydrocarbon liquids is calculated and compared with experimental results from the literature. The initial track structure is obtained by bringing the details of the electron scattering into account. The number...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 1997-02, Vol.101 (8), p.1619-1627 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The number of ions escaping from recombination in high-energy electron tracks in saturated hydrocarbon liquids is calculated and compared with experimental results from the literature. The initial track structure is obtained by bringing the details of the electron scattering into account. The number of positive ions and electrons that escape from charge recombination is obtained from a computer simulation of the trajectories of the positive ions and the electrons. The probability that the charges escape from each other is seen to change appreciably with the energy of the primary high-energy electron. The thermalization distance distribution of the electrons in the track is obtained by comparing the calculated results with those from experiments. The influence of external electric fields on the escape of ions is considered. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/jp962166l |