Loading…

Effect of Anion Disorder on the Peierls Transition in the Commensurate One-Dimensional Conductors (TTF)(SCN)0.56(ClO4)0.01, (TTF)(NO3)0.59(Cl)0.28, and (TTF)(SCN)0.09(Br)0.59

Three new quasi-one-dimensional tetrathiafulvalenium (TTF) conductors, (TTF)(SCN)0.56(ClO4)0.01, (TTF)(NO3)0.59(Cl)0.28, and (TTF)(SCN)0.09(Br)0.59, were obtained by electrochemical crystallization. They are all nonstoichiometric compounds with commensurate anion ratios and behave as Mott's 1D...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 1999-09, Vol.103 (36), p.7565-7572
Main Authors: Mizuno, Masagi, Honda, Kazumasa, Akimoto, Jyunji, Nakayama, Hikari, Uchida, Tokiko
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Three new quasi-one-dimensional tetrathiafulvalenium (TTF) conductors, (TTF)(SCN)0.56(ClO4)0.01, (TTF)(NO3)0.59(Cl)0.28, and (TTF)(SCN)0.09(Br)0.59, were obtained by electrochemical crystallization. They are all nonstoichiometric compounds with commensurate anion ratios and behave as Mott's 1D variable range hopping conductors because of their disordered anion structure. Evidenced by their unusual structure−conductivity characteristics, they are considered as in the intermediate regime, ranging from the highly conducting incommensurate compounds to the almost insulating commensurate salts with Peierls structure typified by (TTF)3(BF4)2. The Peierls instability is thus suppressed giving incomplete Peierls structures for these compounds despite their commensurate band filling ratio. This was most probably derived from the random potential exerted over TTF conducting chain by the disordered anion structure.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp990558x