Loading…
Screw Dislocations in ⟨100⟩ Silicon Nanowires: An Objective Molecular Dynamics Study
Objective molecular dynamics and a tight-binding density functional-based model are used to investigate the mechanical stability and electronic structure of silicon nanowires with radii between 0.5 and 2 nm containing axial screw dislocations. The dislocated wires adopt twisted configurations that s...
Saved in:
Published in: | The journal of physical chemistry letters 2011-10, Vol.2 (20), p.2544-2548 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Objective molecular dynamics and a tight-binding density functional-based model are used to investigate the mechanical stability and electronic structure of silicon nanowires with radii between 0.5 and 2 nm containing axial screw dislocations. The dislocated wires adopt twisted configurations that stabilize the dislocation at the center despite the close vicinity of surfaces, in excellent agreement with Eshelby’s elasticity model of cylinders containing an axial screw dislocation. Coupled to this elasticity model, our simulations represent a new efficient method of calculating the core energy of a dislocation. We also demonstrate that the change in symmetry caused by the dislocations modulates the electronic states of the wires. The uncovered mechanical and electronic behaviors have implications for a broad class of nanomaterials grown by engaging a screw dislocation. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/jz201102h |