Loading…
Sodium Taurodeoxycholate Structure from Solid to Liquid Phase
A 7/1 helix was previously identified by X-ray diffraction analysis as the structural unit of a sodium taurodeoxycholate (NaTDC) fiber drawn from an aqueous micellar solution and proposed as a model of NaTDC micellar aggregates. The repetitive unit of the 7/1 helix is a trimer formed by three NaTDC...
Saved in:
Published in: | Langmuir 2002-04, Vol.18 (7), p.2812-2816 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a295t-f371b395d8745e87ee686e5bd359d235af8850e238d10a32e7b939e948b28c803 |
---|---|
cites | cdi_FETCH-LOGICAL-a295t-f371b395d8745e87ee686e5bd359d235af8850e238d10a32e7b939e948b28c803 |
container_end_page | 2816 |
container_issue | 7 |
container_start_page | 2812 |
container_title | Langmuir |
container_volume | 18 |
creator | Galantini, Luciano Giglio, Edoardo La Mesa, Camillo Pavel, Nicolae Viorel Punzo, Francesco |
description | A 7/1 helix was previously identified by X-ray diffraction analysis as the structural unit of a sodium taurodeoxycholate (NaTDC) fiber drawn from an aqueous micellar solution and proposed as a model of NaTDC micellar aggregates. The repetitive unit of the 7/1 helix is a trimer formed by three NaTDC molecules related by a 3-fold rotation axis. This model was supported by a study of NaTDC aqueous micellar solutions performed with different experimental techniques. Moreover, the phase behavior of the NaTDC−water system was recently studied as a function of concentration and temperature with emphasis on concentrated regions beyond the isotropic solution phase. In the present paper, X-ray measurements carried out on NaTDC concentrated aqueous solutions and fibrils that grow from these solutions are presented. Experimental results strongly support the following. The NaTDC aggregates are helices formed by trimers both in concentrated aqueous solutions and in fibrils. Fibrils are composed of the same 7/1 helices of the fiber, whereas concentrated aqueous solutions contain helices with a larger cross section and a shorter identity period along the helical axis than the 7/1 helices. The trimer repeat along the helical axis and the radius are, respectively, about 6.4 and 10.2 Å in the fibrils and 3.6 and 15.85 Å in the concentrated aqueous solutions. Both of the helices are packed into rectangular unit cells which can be derived from trigonal or hexagonal unit cells. Because the trimer seems to flatten by decreasing the concentration, the radius of the structural unit in the isotropic solution phase should be greater than about 15.85 Å. These results permit a reasonable guess about the structural evolution of NaTDC aggregates from the solid to the liquid phase. Some suggestions about the sodium deoxycholate and taurocholate behavior are also provided. |
doi_str_mv | 10.1021/la011519r |
format | article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_la011519r</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_KWZ7X16S_Z</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-f371b395d8745e87ee686e5bd359d235af8850e238d10a32e7b939e948b28c803</originalsourceid><addsrcrecordid>eNptz0tLxDAUhuEgCtbRhf-gGxcuqrk0TbJwIYM3LDjQijKbkDanTMeO0aSFmX9vpTIrV-csHj54ETon-IpgSq47gwnhRPkDFBFOccIlFYcowiJliUgzdoxOQlhjjBVLVYRuCmfbYROXZvDOgtvu6pXrTA9x0fuh7gcPcePdJi5c19q4d3Hefg_jt1iZAKfoqDFdgLO_O0Ov93fl_DHJXx6e5rd5YqjifdIwQSqmuJUi5SAFQCYz4JVlXFnKuGmk5Bgok5ZgwyiISjEFKpUVlbXEbIYup93auxA8NPrLtxvjd5pg_dut992jTSbbhh62e2j8h84EE1yXi0I_vy3FO8kKvRz9xeRNHfTaDf5zLPln9wcNeGV6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sodium Taurodeoxycholate Structure from Solid to Liquid Phase</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Galantini, Luciano ; Giglio, Edoardo ; La Mesa, Camillo ; Pavel, Nicolae Viorel ; Punzo, Francesco</creator><creatorcontrib>Galantini, Luciano ; Giglio, Edoardo ; La Mesa, Camillo ; Pavel, Nicolae Viorel ; Punzo, Francesco</creatorcontrib><description>A 7/1 helix was previously identified by X-ray diffraction analysis as the structural unit of a sodium taurodeoxycholate (NaTDC) fiber drawn from an aqueous micellar solution and proposed as a model of NaTDC micellar aggregates. The repetitive unit of the 7/1 helix is a trimer formed by three NaTDC molecules related by a 3-fold rotation axis. This model was supported by a study of NaTDC aqueous micellar solutions performed with different experimental techniques. Moreover, the phase behavior of the NaTDC−water system was recently studied as a function of concentration and temperature with emphasis on concentrated regions beyond the isotropic solution phase. In the present paper, X-ray measurements carried out on NaTDC concentrated aqueous solutions and fibrils that grow from these solutions are presented. Experimental results strongly support the following. The NaTDC aggregates are helices formed by trimers both in concentrated aqueous solutions and in fibrils. Fibrils are composed of the same 7/1 helices of the fiber, whereas concentrated aqueous solutions contain helices with a larger cross section and a shorter identity period along the helical axis than the 7/1 helices. The trimer repeat along the helical axis and the radius are, respectively, about 6.4 and 10.2 Å in the fibrils and 3.6 and 15.85 Å in the concentrated aqueous solutions. Both of the helices are packed into rectangular unit cells which can be derived from trigonal or hexagonal unit cells. Because the trimer seems to flatten by decreasing the concentration, the radius of the structural unit in the isotropic solution phase should be greater than about 15.85 Å. These results permit a reasonable guess about the structural evolution of NaTDC aggregates from the solid to the liquid phase. Some suggestions about the sodium deoxycholate and taurocholate behavior are also provided.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la011519r</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Langmuir, 2002-04, Vol.18 (7), p.2812-2816</ispartof><rights>Copyright © 2002 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-f371b395d8745e87ee686e5bd359d235af8850e238d10a32e7b939e948b28c803</citedby><cites>FETCH-LOGICAL-a295t-f371b395d8745e87ee686e5bd359d235af8850e238d10a32e7b939e948b28c803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Galantini, Luciano</creatorcontrib><creatorcontrib>Giglio, Edoardo</creatorcontrib><creatorcontrib>La Mesa, Camillo</creatorcontrib><creatorcontrib>Pavel, Nicolae Viorel</creatorcontrib><creatorcontrib>Punzo, Francesco</creatorcontrib><title>Sodium Taurodeoxycholate Structure from Solid to Liquid Phase</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>A 7/1 helix was previously identified by X-ray diffraction analysis as the structural unit of a sodium taurodeoxycholate (NaTDC) fiber drawn from an aqueous micellar solution and proposed as a model of NaTDC micellar aggregates. The repetitive unit of the 7/1 helix is a trimer formed by three NaTDC molecules related by a 3-fold rotation axis. This model was supported by a study of NaTDC aqueous micellar solutions performed with different experimental techniques. Moreover, the phase behavior of the NaTDC−water system was recently studied as a function of concentration and temperature with emphasis on concentrated regions beyond the isotropic solution phase. In the present paper, X-ray measurements carried out on NaTDC concentrated aqueous solutions and fibrils that grow from these solutions are presented. Experimental results strongly support the following. The NaTDC aggregates are helices formed by trimers both in concentrated aqueous solutions and in fibrils. Fibrils are composed of the same 7/1 helices of the fiber, whereas concentrated aqueous solutions contain helices with a larger cross section and a shorter identity period along the helical axis than the 7/1 helices. The trimer repeat along the helical axis and the radius are, respectively, about 6.4 and 10.2 Å in the fibrils and 3.6 and 15.85 Å in the concentrated aqueous solutions. Both of the helices are packed into rectangular unit cells which can be derived from trigonal or hexagonal unit cells. Because the trimer seems to flatten by decreasing the concentration, the radius of the structural unit in the isotropic solution phase should be greater than about 15.85 Å. These results permit a reasonable guess about the structural evolution of NaTDC aggregates from the solid to the liquid phase. Some suggestions about the sodium deoxycholate and taurocholate behavior are also provided.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNptz0tLxDAUhuEgCtbRhf-gGxcuqrk0TbJwIYM3LDjQijKbkDanTMeO0aSFmX9vpTIrV-csHj54ETon-IpgSq47gwnhRPkDFBFOccIlFYcowiJliUgzdoxOQlhjjBVLVYRuCmfbYROXZvDOgtvu6pXrTA9x0fuh7gcPcePdJi5c19q4d3Hefg_jt1iZAKfoqDFdgLO_O0Ov93fl_DHJXx6e5rd5YqjifdIwQSqmuJUi5SAFQCYz4JVlXFnKuGmk5Bgok5ZgwyiISjEFKpUVlbXEbIYup93auxA8NPrLtxvjd5pg_dut992jTSbbhh62e2j8h84EE1yXi0I_vy3FO8kKvRz9xeRNHfTaDf5zLPln9wcNeGV6</recordid><startdate>20020402</startdate><enddate>20020402</enddate><creator>Galantini, Luciano</creator><creator>Giglio, Edoardo</creator><creator>La Mesa, Camillo</creator><creator>Pavel, Nicolae Viorel</creator><creator>Punzo, Francesco</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020402</creationdate><title>Sodium Taurodeoxycholate Structure from Solid to Liquid Phase</title><author>Galantini, Luciano ; Giglio, Edoardo ; La Mesa, Camillo ; Pavel, Nicolae Viorel ; Punzo, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-f371b395d8745e87ee686e5bd359d235af8850e238d10a32e7b939e948b28c803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galantini, Luciano</creatorcontrib><creatorcontrib>Giglio, Edoardo</creatorcontrib><creatorcontrib>La Mesa, Camillo</creatorcontrib><creatorcontrib>Pavel, Nicolae Viorel</creatorcontrib><creatorcontrib>Punzo, Francesco</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galantini, Luciano</au><au>Giglio, Edoardo</au><au>La Mesa, Camillo</au><au>Pavel, Nicolae Viorel</au><au>Punzo, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sodium Taurodeoxycholate Structure from Solid to Liquid Phase</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2002-04-02</date><risdate>2002</risdate><volume>18</volume><issue>7</issue><spage>2812</spage><epage>2816</epage><pages>2812-2816</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>A 7/1 helix was previously identified by X-ray diffraction analysis as the structural unit of a sodium taurodeoxycholate (NaTDC) fiber drawn from an aqueous micellar solution and proposed as a model of NaTDC micellar aggregates. The repetitive unit of the 7/1 helix is a trimer formed by three NaTDC molecules related by a 3-fold rotation axis. This model was supported by a study of NaTDC aqueous micellar solutions performed with different experimental techniques. Moreover, the phase behavior of the NaTDC−water system was recently studied as a function of concentration and temperature with emphasis on concentrated regions beyond the isotropic solution phase. In the present paper, X-ray measurements carried out on NaTDC concentrated aqueous solutions and fibrils that grow from these solutions are presented. Experimental results strongly support the following. The NaTDC aggregates are helices formed by trimers both in concentrated aqueous solutions and in fibrils. Fibrils are composed of the same 7/1 helices of the fiber, whereas concentrated aqueous solutions contain helices with a larger cross section and a shorter identity period along the helical axis than the 7/1 helices. The trimer repeat along the helical axis and the radius are, respectively, about 6.4 and 10.2 Å in the fibrils and 3.6 and 15.85 Å in the concentrated aqueous solutions. Both of the helices are packed into rectangular unit cells which can be derived from trigonal or hexagonal unit cells. Because the trimer seems to flatten by decreasing the concentration, the radius of the structural unit in the isotropic solution phase should be greater than about 15.85 Å. These results permit a reasonable guess about the structural evolution of NaTDC aggregates from the solid to the liquid phase. Some suggestions about the sodium deoxycholate and taurocholate behavior are also provided.</abstract><pub>American Chemical Society</pub><doi>10.1021/la011519r</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2002-04, Vol.18 (7), p.2812-2816 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_crossref_primary_10_1021_la011519r |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Sodium Taurodeoxycholate Structure from Solid to Liquid Phase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A59%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sodium%20Taurodeoxycholate%20Structure%20from%20Solid%20to%20Liquid%20Phase&rft.jtitle=Langmuir&rft.au=Galantini,%20Luciano&rft.date=2002-04-02&rft.volume=18&rft.issue=7&rft.spage=2812&rft.epage=2816&rft.pages=2812-2816&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/la011519r&rft_dat=%3Cistex_cross%3Eark_67375_TPS_KWZ7X16S_Z%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a295t-f371b395d8745e87ee686e5bd359d235af8850e238d10a32e7b939e948b28c803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |