Loading…

Solving Mazes Using Microfluidic Networks

This work demonstrates that pressure-driven flow in a microfluidic network can solve mazelike problems by exploring all possible solutions in a parallel fashion. Microfluidic networks can be fabricated easily by soft lithography and rapid prototyping. To find the best path between the inlet and the...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2003-05, Vol.19 (11), p.4714-4722
Main Authors: Fuerstman, Michael J, Deschatelets, Pascal, Kane, Ravi, Schwartz, Alexander, Kenis, Paul J. A, Deutch, John M, Whitesides, George M
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a332t-116a4b84a6954f0c15edf6d21cb8eb9ac9789517cbb4c6a42371baa7c881f4163
cites cdi_FETCH-LOGICAL-a332t-116a4b84a6954f0c15edf6d21cb8eb9ac9789517cbb4c6a42371baa7c881f4163
container_end_page 4722
container_issue 11
container_start_page 4714
container_title Langmuir
container_volume 19
creator Fuerstman, Michael J
Deschatelets, Pascal
Kane, Ravi
Schwartz, Alexander
Kenis, Paul J. A
Deutch, John M
Whitesides, George M
description This work demonstrates that pressure-driven flow in a microfluidic network can solve mazelike problems by exploring all possible solutions in a parallel fashion. Microfluidic networks can be fabricated easily by soft lithography and rapid prototyping. To find the best path between the inlet and the outlet of these networks, the channels are filled with a fluid, and the path of a second, dyed fluid moving under pressure-driven flow is traced from the inlet to the outlet. Varying the viscosities of these fluids allows the behavior of the system to be tailored. For example, filling the channels with immiscible fluids of different viscosities enhances the resolution of paths of different fluidic resistances.
doi_str_mv 10.1021/la030054x
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_la030054x</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b160196038</sourcerecordid><originalsourceid>FETCH-LOGICAL-a332t-116a4b84a6954f0c15edf6d21cb8eb9ac9789517cbb4c6a42371baa7c881f4163</originalsourceid><addsrcrecordid>eNptzzFPwzAQBWALgUQoDPyDLAwdDHexHccjqqAgtVAprYRYLMdxUNrQILuFwq8nENSJ6W749PQeIecIlwgJXjUGGIDguwMSoUiAiiyRhyQCyRmVPGXH5CSEJQAoxlVEhnnbvNfrl3hqvlyIF-H3r61vq2Zbl7WNH9zmo_WrcEqOKtMEd_Z3B2RxezMf3dHJ4_h-dD2hhrFkQxFTw4uMm1QJXoFF4coqLRO0ReYKZaySmRIobVFw29GESSyMkTbLsOKYsgEZ9rldhxC8q_Sbr1-N_9QI-mej3m_sLO1tHTZut4fGr3QqmRR6Pst1_jzNEZ6UnnX-ovfGBr1st37dLfkn9xsQIl6V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solving Mazes Using Microfluidic Networks</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Fuerstman, Michael J ; Deschatelets, Pascal ; Kane, Ravi ; Schwartz, Alexander ; Kenis, Paul J. A ; Deutch, John M ; Whitesides, George M</creator><creatorcontrib>Fuerstman, Michael J ; Deschatelets, Pascal ; Kane, Ravi ; Schwartz, Alexander ; Kenis, Paul J. A ; Deutch, John M ; Whitesides, George M</creatorcontrib><description>This work demonstrates that pressure-driven flow in a microfluidic network can solve mazelike problems by exploring all possible solutions in a parallel fashion. Microfluidic networks can be fabricated easily by soft lithography and rapid prototyping. To find the best path between the inlet and the outlet of these networks, the channels are filled with a fluid, and the path of a second, dyed fluid moving under pressure-driven flow is traced from the inlet to the outlet. Varying the viscosities of these fluids allows the behavior of the system to be tailored. For example, filling the channels with immiscible fluids of different viscosities enhances the resolution of paths of different fluidic resistances.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la030054x</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Langmuir, 2003-05, Vol.19 (11), p.4714-4722</ispartof><rights>Copyright © 2003 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a332t-116a4b84a6954f0c15edf6d21cb8eb9ac9789517cbb4c6a42371baa7c881f4163</citedby><cites>FETCH-LOGICAL-a332t-116a4b84a6954f0c15edf6d21cb8eb9ac9789517cbb4c6a42371baa7c881f4163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Fuerstman, Michael J</creatorcontrib><creatorcontrib>Deschatelets, Pascal</creatorcontrib><creatorcontrib>Kane, Ravi</creatorcontrib><creatorcontrib>Schwartz, Alexander</creatorcontrib><creatorcontrib>Kenis, Paul J. A</creatorcontrib><creatorcontrib>Deutch, John M</creatorcontrib><creatorcontrib>Whitesides, George M</creatorcontrib><title>Solving Mazes Using Microfluidic Networks</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>This work demonstrates that pressure-driven flow in a microfluidic network can solve mazelike problems by exploring all possible solutions in a parallel fashion. Microfluidic networks can be fabricated easily by soft lithography and rapid prototyping. To find the best path between the inlet and the outlet of these networks, the channels are filled with a fluid, and the path of a second, dyed fluid moving under pressure-driven flow is traced from the inlet to the outlet. Varying the viscosities of these fluids allows the behavior of the system to be tailored. For example, filling the channels with immiscible fluids of different viscosities enhances the resolution of paths of different fluidic resistances.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNptzzFPwzAQBWALgUQoDPyDLAwdDHexHccjqqAgtVAprYRYLMdxUNrQILuFwq8nENSJ6W749PQeIecIlwgJXjUGGIDguwMSoUiAiiyRhyQCyRmVPGXH5CSEJQAoxlVEhnnbvNfrl3hqvlyIF-H3r61vq2Zbl7WNH9zmo_WrcEqOKtMEd_Z3B2RxezMf3dHJ4_h-dD2hhrFkQxFTw4uMm1QJXoFF4coqLRO0ReYKZaySmRIobVFw29GESSyMkTbLsOKYsgEZ9rldhxC8q_Sbr1-N_9QI-mej3m_sLO1tHTZut4fGr3QqmRR6Pst1_jzNEZ6UnnX-ovfGBr1st37dLfkn9xsQIl6V</recordid><startdate>20030527</startdate><enddate>20030527</enddate><creator>Fuerstman, Michael J</creator><creator>Deschatelets, Pascal</creator><creator>Kane, Ravi</creator><creator>Schwartz, Alexander</creator><creator>Kenis, Paul J. A</creator><creator>Deutch, John M</creator><creator>Whitesides, George M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030527</creationdate><title>Solving Mazes Using Microfluidic Networks</title><author>Fuerstman, Michael J ; Deschatelets, Pascal ; Kane, Ravi ; Schwartz, Alexander ; Kenis, Paul J. A ; Deutch, John M ; Whitesides, George M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a332t-116a4b84a6954f0c15edf6d21cb8eb9ac9789517cbb4c6a42371baa7c881f4163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuerstman, Michael J</creatorcontrib><creatorcontrib>Deschatelets, Pascal</creatorcontrib><creatorcontrib>Kane, Ravi</creatorcontrib><creatorcontrib>Schwartz, Alexander</creatorcontrib><creatorcontrib>Kenis, Paul J. A</creatorcontrib><creatorcontrib>Deutch, John M</creatorcontrib><creatorcontrib>Whitesides, George M</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuerstman, Michael J</au><au>Deschatelets, Pascal</au><au>Kane, Ravi</au><au>Schwartz, Alexander</au><au>Kenis, Paul J. A</au><au>Deutch, John M</au><au>Whitesides, George M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving Mazes Using Microfluidic Networks</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2003-05-27</date><risdate>2003</risdate><volume>19</volume><issue>11</issue><spage>4714</spage><epage>4722</epage><pages>4714-4722</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>This work demonstrates that pressure-driven flow in a microfluidic network can solve mazelike problems by exploring all possible solutions in a parallel fashion. Microfluidic networks can be fabricated easily by soft lithography and rapid prototyping. To find the best path between the inlet and the outlet of these networks, the channels are filled with a fluid, and the path of a second, dyed fluid moving under pressure-driven flow is traced from the inlet to the outlet. Varying the viscosities of these fluids allows the behavior of the system to be tailored. For example, filling the channels with immiscible fluids of different viscosities enhances the resolution of paths of different fluidic resistances.</abstract><pub>American Chemical Society</pub><doi>10.1021/la030054x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2003-05, Vol.19 (11), p.4714-4722
issn 0743-7463
1520-5827
language eng
recordid cdi_crossref_primary_10_1021_la030054x
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Solving Mazes Using Microfluidic Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A49%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20Mazes%20Using%20Microfluidic%20Networks&rft.jtitle=Langmuir&rft.au=Fuerstman,%20Michael%20J&rft.date=2003-05-27&rft.volume=19&rft.issue=11&rft.spage=4714&rft.epage=4722&rft.pages=4714-4722&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/la030054x&rft_dat=%3Cacs_cross%3Eb160196038%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a332t-116a4b84a6954f0c15edf6d21cb8eb9ac9789517cbb4c6a42371baa7c881f4163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true