Loading…
Supramolecular Polymorphism: Tunable Electronic Interactions within π‑Conjugated Peptide Nanostructures Dictated by Primary Amino Acid Sequence
We present a systematic study of the photophysical properties of one-dimensional electronically delocalized nanostructures assembled from π-conjugated subunits embedded within oligopeptide backbones. The nature of the excited states within these nanostructures is studied as a function of primary ami...
Saved in:
Published in: | Langmuir 2014-05, Vol.30 (20), p.5946-5956 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a systematic study of the photophysical properties of one-dimensional electronically delocalized nanostructures assembled from π-conjugated subunits embedded within oligopeptide backbones. The nature of the excited states within these nanostructures is studied as a function of primary amino acid sequence utilizing steady-state and time-resolved spectroscopies, and their atomistic structure is probed by molecular simulation. Variations introduced into the amino acid side chains at specific residue locations along the molecular peptide backbone lead to pronounced changes in the observed photophysical behavior of the fibrillar structures (spanning H-like excitonic coupling and disordered excimeric coupling) that arise from subtle changes in the π-stacking within them. These results indicate that residue modificationin terms of relative size, solvation properties, and with respect to the distance from the central π-electron coreenables the ability to tune chromophore packing and the resulting photophysics of supramolecular assemblies of π-conjugated bioelectronic materials in a rational and systematic manner. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la500222y |