Loading…
Mechanism of Degradation of Starch, a Highly Branched Polymer, during Extrusion
An investigation of the mechanisms of degradation of a branched polymer in extrusion was performed using starch as substrate. Starch has the advantage that the distribution of degree of polymerization of individual branches can be readily obtained using a debranching enzyme and also that it does not...
Saved in:
Published in: | Macromolecules 2010-03, Vol.43 (6), p.2855-2864 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An investigation of the mechanisms of degradation of a branched polymer in extrusion was performed using starch as substrate. Starch has the advantage that the distribution of degree of polymerization of individual branches can be readily obtained using a debranching enzyme and also that it does not undergo any reaction except scission during extrusion, thereby aiding mechanistic interpretation. Various starches, containing a range of the highly branched amylopectin component and the much less branched amylose component, were extruded in the presence of water and glycerol as plasticizers with extruder barrel temperatures ranging from 50 °C at the hopper zone through to 140 °C near the die exit. Analysis by size-exclusion chromatography of both whole and debranched samples subject to various levels of extrusion showed that the extrusion degradation process involved preferential cleaving of larger molecules, while causing the size distribution to narrow and converge toward a maximum stable size. This is analogous to a similar effect of shear degradation of droplets in emulsions. It was also found that the susceptibility of polymer molecules to shear degradation is not only dependent on the size of the molecule but also extensively influenced by the branching structure. High branching density and short branch length were associated with higher susceptibility to shear degradation. This is explained by the hypothesis that a short-chain hyperbranched polymer has a relatively inflexible structure, leading to a higher susceptibility to shear scission. The degradation process is not significantly selective toward the length of individual branches when the polymer is in a molten state but it preferentially breaks longer branches when the starch polymer is in a semicrystalline granular form. These inferences are generally applicable and use the additional information from the branch length distribution and absence of side reactions, which is generally not available for synthetic polymers. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/ma100067x |