Loading…

Zinc-Containing Block Copolymer as a Precursor for the in Situ Formation of Nano ZnO and PMMA/ZnO Nanocomposites

We report on the synthesis of highly transparent and UV-absorbing PMMA/ZnO nanocomposites prepared by hydrolysis of a ZnO precursor, the A-b-(AB) diblock copolymer, poly(methyl methacrylate)-block-poly(methyl methacrylate-co-(zinc methacrylate acetate)), PMMA-b-P(MMA-co-ZnMAAc), synthesized by RAFT...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecules 2013-09, Vol.46 (17), p.6942-6948
Main Authors: Kos, Tomaž, Anžlovar, Alojz, Pahovnik, David, Žagar, Ema, Orel, Zorica Crnjak, Žigon, Majda
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report on the synthesis of highly transparent and UV-absorbing PMMA/ZnO nanocomposites prepared by hydrolysis of a ZnO precursor, the A-b-(AB) diblock copolymer, poly(methyl methacrylate)-block-poly(methyl methacrylate-co-(zinc methacrylate acetate)), PMMA-b-P(MMA-co-ZnMAAc), synthesized by RAFT polymerization. The zinc content of the block copolymers was in the range from 3 to 13 wt %. The PMMA block provides inherent compatibility with the PMMA matrix, whereas the second block, P(MMA-co-ZnMAAc) with zinc ions, acts as a polymeric precursor for the formation of ZnO nanoparticles. The amphiphilic block copolymer self-organizes in THF and THF/H2O in ordered nanostructures, thereby influencing the nanoparticle formation during the hydrolysis of the precursor block copolymer with KOH in a solvent mixture THF/H2O. The ZnO nanoparticles were rod-shaped with lengths up to 80 nm and a diameter of 14 nm and were redispersible in THF. Dispersions in THF and thin films of PMMA/ZnO nanocomposite exhibit excellent transparency in the visible range and good absorption in the UV range below 400 nm. The block copolymer was characterized by SEC, NMR, DLS, and TGA, while PMMA/ZnO nanocomposites were characterized by IR, XRD, UV–vis, and STEM.
ISSN:0024-9297
1520-5835
DOI:10.1021/ma4010296