Loading…
Thermotropic Polyesters from 2,5-Furandicarboxylic Acid and Vanillic Acid: Synthesis, Thermal Properties, Melt Behavior, and Mechanical Performance
In this work, we address the synthesis of novel aromatic–aliphatic biobased polyesters showing thermotropic behavior in the melt. Successful incorporation of different biobased monomers such as 2,5-furandicarboxylic acid (2,5-FDCA), suberic acid (SuA), and vanillic acid (VA) in thermotropic liquid c...
Saved in:
Published in: | Macromolecules 2014-05, Vol.47 (10), p.3306-3316 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a392t-40d4091efcdab951c38cf26e4673e9bf61ecd1140a3b7b640aa658256aed32cb3 |
---|---|
cites | cdi_FETCH-LOGICAL-a392t-40d4091efcdab951c38cf26e4673e9bf61ecd1140a3b7b640aa658256aed32cb3 |
container_end_page | 3316 |
container_issue | 10 |
container_start_page | 3306 |
container_title | Macromolecules |
container_volume | 47 |
creator | Wilsens, Carolus H. R. M Verhoeven, Johan M. G. A Noordover, Bart A. J Hansen, Michael Ryan Auhl, Dietmar Rastogi, Sanjay |
description | In this work, we address the synthesis of novel aromatic–aliphatic biobased polyesters showing thermotropic behavior in the melt. Successful incorporation of different biobased monomers such as 2,5-furandicarboxylic acid (2,5-FDCA), suberic acid (SuA), and vanillic acid (VA) in thermotropic liquid crystalline polymers (TLCPs) is made possible by performing synthesis at low temperatures. The chemical structures, molecular weights, phase transitions, thermal behavior, and mechanical performance of the synthesized polymers are studied using polarization optical microscopy, WAXD, DSC, TGA, DMTA, solid-state NMR spectroscopy, rheology, and tensile tests. It is shown that the incorporation of the rigid, aromatic 2,5-FDCA moiety enhances the formation of blocky copolymers, whereas the VA moiety tends to decrease the block formation. However, when combined, nonblocky TLCPs containing 2,5-FDCA and VA with high aromatic content can be obtained. These materials show a low temperature transition from the crystalline to the nematic phase, and stable nematic phases up to 300 °C and higher. Furthermore, in such polymers, the 2,5-FDCA and VA moieties require more thermal energy to become mobile compared to the phenyl rings in hydroxybenzoic acid, hydroquinone, and 4,4′-biphenol. Mechanical analysis shows that the performance of these polymers is correlated to their crystallinity. Surprisingly, a higher crystallinity results in ductile behavior, whereas a lower crystallinity results in a higher modulus, a higher stress at break, and a lower strain at break. |
doi_str_mv | 10.1021/ma500433e |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ma500433e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e31131516</sourcerecordid><originalsourceid>FETCH-LOGICAL-a392t-40d4091efcdab951c38cf26e4673e9bf61ecd1140a3b7b640aa658256aed32cb3</originalsourceid><addsrcrecordid>eNptkM1Kw0AURgdRsFYXvsFsXAiNzk8mTdzVYlVosWB1GyaTO2RKmikzqZjn8IWdtlo3ri58nHu490PokpIbShi9XUlBSMw5HKEeFYxEIuXiGPUIYXGUsWx4is68XxJCqYh5D30tKnAr2zq7NgrPbd2Bb8F5rJ1dYTYQ0WTjZFMaJV1hP7s6UCNlShwy_C4bU_8md_i1a9oKvPEDvLPKGs-DF1xrIGQzqFt8D5X8MNYNdoIZqCo41JYEp23YaRScoxMtaw8XP7OP3iYPi_FTNH15fB6PppHkGWujmJQxyShoVcoiE1TxVGmWQJwMOWSFTiioktKYSF4MiyRMmYiUiURCyZkqeB9d773KWe8d6HztzEq6Lqck37aZH9oM7NWeXUsfztWhE2X8YYGlggmSJX-cVD5f2o1rwgf_-L4BUxaCkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermotropic Polyesters from 2,5-Furandicarboxylic Acid and Vanillic Acid: Synthesis, Thermal Properties, Melt Behavior, and Mechanical Performance</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Wilsens, Carolus H. R. M ; Verhoeven, Johan M. G. A ; Noordover, Bart A. J ; Hansen, Michael Ryan ; Auhl, Dietmar ; Rastogi, Sanjay</creator><creatorcontrib>Wilsens, Carolus H. R. M ; Verhoeven, Johan M. G. A ; Noordover, Bart A. J ; Hansen, Michael Ryan ; Auhl, Dietmar ; Rastogi, Sanjay</creatorcontrib><description>In this work, we address the synthesis of novel aromatic–aliphatic biobased polyesters showing thermotropic behavior in the melt. Successful incorporation of different biobased monomers such as 2,5-furandicarboxylic acid (2,5-FDCA), suberic acid (SuA), and vanillic acid (VA) in thermotropic liquid crystalline polymers (TLCPs) is made possible by performing synthesis at low temperatures. The chemical structures, molecular weights, phase transitions, thermal behavior, and mechanical performance of the synthesized polymers are studied using polarization optical microscopy, WAXD, DSC, TGA, DMTA, solid-state NMR spectroscopy, rheology, and tensile tests. It is shown that the incorporation of the rigid, aromatic 2,5-FDCA moiety enhances the formation of blocky copolymers, whereas the VA moiety tends to decrease the block formation. However, when combined, nonblocky TLCPs containing 2,5-FDCA and VA with high aromatic content can be obtained. These materials show a low temperature transition from the crystalline to the nematic phase, and stable nematic phases up to 300 °C and higher. Furthermore, in such polymers, the 2,5-FDCA and VA moieties require more thermal energy to become mobile compared to the phenyl rings in hydroxybenzoic acid, hydroquinone, and 4,4′-biphenol. Mechanical analysis shows that the performance of these polymers is correlated to their crystallinity. Surprisingly, a higher crystallinity results in ductile behavior, whereas a lower crystallinity results in a higher modulus, a higher stress at break, and a lower strain at break.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma500433e</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Polymers with particular structures ; Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><ispartof>Macromolecules, 2014-05, Vol.47 (10), p.3306-3316</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a392t-40d4091efcdab951c38cf26e4673e9bf61ecd1140a3b7b640aa658256aed32cb3</citedby><cites>FETCH-LOGICAL-a392t-40d4091efcdab951c38cf26e4673e9bf61ecd1140a3b7b640aa658256aed32cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28525096$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilsens, Carolus H. R. M</creatorcontrib><creatorcontrib>Verhoeven, Johan M. G. A</creatorcontrib><creatorcontrib>Noordover, Bart A. J</creatorcontrib><creatorcontrib>Hansen, Michael Ryan</creatorcontrib><creatorcontrib>Auhl, Dietmar</creatorcontrib><creatorcontrib>Rastogi, Sanjay</creatorcontrib><title>Thermotropic Polyesters from 2,5-Furandicarboxylic Acid and Vanillic Acid: Synthesis, Thermal Properties, Melt Behavior, and Mechanical Performance</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>In this work, we address the synthesis of novel aromatic–aliphatic biobased polyesters showing thermotropic behavior in the melt. Successful incorporation of different biobased monomers such as 2,5-furandicarboxylic acid (2,5-FDCA), suberic acid (SuA), and vanillic acid (VA) in thermotropic liquid crystalline polymers (TLCPs) is made possible by performing synthesis at low temperatures. The chemical structures, molecular weights, phase transitions, thermal behavior, and mechanical performance of the synthesized polymers are studied using polarization optical microscopy, WAXD, DSC, TGA, DMTA, solid-state NMR spectroscopy, rheology, and tensile tests. It is shown that the incorporation of the rigid, aromatic 2,5-FDCA moiety enhances the formation of blocky copolymers, whereas the VA moiety tends to decrease the block formation. However, when combined, nonblocky TLCPs containing 2,5-FDCA and VA with high aromatic content can be obtained. These materials show a low temperature transition from the crystalline to the nematic phase, and stable nematic phases up to 300 °C and higher. Furthermore, in such polymers, the 2,5-FDCA and VA moieties require more thermal energy to become mobile compared to the phenyl rings in hydroxybenzoic acid, hydroquinone, and 4,4′-biphenol. Mechanical analysis shows that the performance of these polymers is correlated to their crystallinity. Surprisingly, a higher crystallinity results in ductile behavior, whereas a lower crystallinity results in a higher modulus, a higher stress at break, and a lower strain at break.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polymers with particular structures</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkM1Kw0AURgdRsFYXvsFsXAiNzk8mTdzVYlVosWB1GyaTO2RKmikzqZjn8IWdtlo3ri58nHu490PokpIbShi9XUlBSMw5HKEeFYxEIuXiGPUIYXGUsWx4is68XxJCqYh5D30tKnAr2zq7NgrPbd2Bb8F5rJ1dYTYQ0WTjZFMaJV1hP7s6UCNlShwy_C4bU_8md_i1a9oKvPEDvLPKGs-DF1xrIGQzqFt8D5X8MNYNdoIZqCo41JYEp23YaRScoxMtaw8XP7OP3iYPi_FTNH15fB6PppHkGWujmJQxyShoVcoiE1TxVGmWQJwMOWSFTiioktKYSF4MiyRMmYiUiURCyZkqeB9d773KWe8d6HztzEq6Lqck37aZH9oM7NWeXUsfztWhE2X8YYGlggmSJX-cVD5f2o1rwgf_-L4BUxaCkg</recordid><startdate>20140527</startdate><enddate>20140527</enddate><creator>Wilsens, Carolus H. R. M</creator><creator>Verhoeven, Johan M. G. A</creator><creator>Noordover, Bart A. J</creator><creator>Hansen, Michael Ryan</creator><creator>Auhl, Dietmar</creator><creator>Rastogi, Sanjay</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140527</creationdate><title>Thermotropic Polyesters from 2,5-Furandicarboxylic Acid and Vanillic Acid: Synthesis, Thermal Properties, Melt Behavior, and Mechanical Performance</title><author>Wilsens, Carolus H. R. M ; Verhoeven, Johan M. G. A ; Noordover, Bart A. J ; Hansen, Michael Ryan ; Auhl, Dietmar ; Rastogi, Sanjay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a392t-40d4091efcdab951c38cf26e4673e9bf61ecd1140a3b7b640aa658256aed32cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polymers with particular structures</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilsens, Carolus H. R. M</creatorcontrib><creatorcontrib>Verhoeven, Johan M. G. A</creatorcontrib><creatorcontrib>Noordover, Bart A. J</creatorcontrib><creatorcontrib>Hansen, Michael Ryan</creatorcontrib><creatorcontrib>Auhl, Dietmar</creatorcontrib><creatorcontrib>Rastogi, Sanjay</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilsens, Carolus H. R. M</au><au>Verhoeven, Johan M. G. A</au><au>Noordover, Bart A. J</au><au>Hansen, Michael Ryan</au><au>Auhl, Dietmar</au><au>Rastogi, Sanjay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermotropic Polyesters from 2,5-Furandicarboxylic Acid and Vanillic Acid: Synthesis, Thermal Properties, Melt Behavior, and Mechanical Performance</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2014-05-27</date><risdate>2014</risdate><volume>47</volume><issue>10</issue><spage>3306</spage><epage>3316</epage><pages>3306-3316</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>In this work, we address the synthesis of novel aromatic–aliphatic biobased polyesters showing thermotropic behavior in the melt. Successful incorporation of different biobased monomers such as 2,5-furandicarboxylic acid (2,5-FDCA), suberic acid (SuA), and vanillic acid (VA) in thermotropic liquid crystalline polymers (TLCPs) is made possible by performing synthesis at low temperatures. The chemical structures, molecular weights, phase transitions, thermal behavior, and mechanical performance of the synthesized polymers are studied using polarization optical microscopy, WAXD, DSC, TGA, DMTA, solid-state NMR spectroscopy, rheology, and tensile tests. It is shown that the incorporation of the rigid, aromatic 2,5-FDCA moiety enhances the formation of blocky copolymers, whereas the VA moiety tends to decrease the block formation. However, when combined, nonblocky TLCPs containing 2,5-FDCA and VA with high aromatic content can be obtained. These materials show a low temperature transition from the crystalline to the nematic phase, and stable nematic phases up to 300 °C and higher. Furthermore, in such polymers, the 2,5-FDCA and VA moieties require more thermal energy to become mobile compared to the phenyl rings in hydroxybenzoic acid, hydroquinone, and 4,4′-biphenol. Mechanical analysis shows that the performance of these polymers is correlated to their crystallinity. Surprisingly, a higher crystallinity results in ductile behavior, whereas a lower crystallinity results in a higher modulus, a higher stress at break, and a lower strain at break.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma500433e</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-9297 |
ispartof | Macromolecules, 2014-05, Vol.47 (10), p.3306-3316 |
issn | 0024-9297 1520-5835 |
language | eng |
recordid | cdi_crossref_primary_10_1021_ma500433e |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Applied sciences Exact sciences and technology Organic polymers Physicochemistry of polymers Polymers with particular structures Preparation, kinetics, thermodynamics, mechanism and catalysts |
title | Thermotropic Polyesters from 2,5-Furandicarboxylic Acid and Vanillic Acid: Synthesis, Thermal Properties, Melt Behavior, and Mechanical Performance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermotropic%20Polyesters%20from%202,5-Furandicarboxylic%20Acid%20and%20Vanillic%20Acid:%20Synthesis,%20Thermal%20Properties,%20Melt%20Behavior,%20and%20Mechanical%20Performance&rft.jtitle=Macromolecules&rft.au=Wilsens,%20Carolus%20H.%20R.%20M&rft.date=2014-05-27&rft.volume=47&rft.issue=10&rft.spage=3306&rft.epage=3316&rft.pages=3306-3316&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma500433e&rft_dat=%3Cacs_cross%3Ee31131516%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a392t-40d4091efcdab951c38cf26e4673e9bf61ecd1140a3b7b640aa658256aed32cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |