Loading…

Thermotropic Polyesters from 2,5-Furandicarboxylic Acid and Vanillic Acid: Synthesis, Thermal Properties, Melt Behavior, and Mechanical Performance

In this work, we address the synthesis of novel aromatic–aliphatic biobased polyesters showing thermotropic behavior in the melt. Successful incorporation of different biobased monomers such as 2,5-furandicarboxylic acid (2,5-FDCA), suberic acid (SuA), and vanillic acid (VA) in thermotropic liquid c...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecules 2014-05, Vol.47 (10), p.3306-3316
Main Authors: Wilsens, Carolus H. R. M, Verhoeven, Johan M. G. A, Noordover, Bart A. J, Hansen, Michael Ryan, Auhl, Dietmar, Rastogi, Sanjay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a392t-40d4091efcdab951c38cf26e4673e9bf61ecd1140a3b7b640aa658256aed32cb3
cites cdi_FETCH-LOGICAL-a392t-40d4091efcdab951c38cf26e4673e9bf61ecd1140a3b7b640aa658256aed32cb3
container_end_page 3316
container_issue 10
container_start_page 3306
container_title Macromolecules
container_volume 47
creator Wilsens, Carolus H. R. M
Verhoeven, Johan M. G. A
Noordover, Bart A. J
Hansen, Michael Ryan
Auhl, Dietmar
Rastogi, Sanjay
description In this work, we address the synthesis of novel aromatic–aliphatic biobased polyesters showing thermotropic behavior in the melt. Successful incorporation of different biobased monomers such as 2,5-furandicarboxylic acid (2,5-FDCA), suberic acid (SuA), and vanillic acid (VA) in thermotropic liquid crystalline polymers (TLCPs) is made possible by performing synthesis at low temperatures. The chemical structures, molecular weights, phase transitions, thermal behavior, and mechanical performance of the synthesized polymers are studied using polarization optical microscopy, WAXD, DSC, TGA, DMTA, solid-state NMR spectroscopy, rheology, and tensile tests. It is shown that the incorporation of the rigid, aromatic 2,5-FDCA moiety enhances the formation of blocky copolymers, whereas the VA moiety tends to decrease the block formation. However, when combined, nonblocky TLCPs containing 2,5-FDCA and VA with high aromatic content can be obtained. These materials show a low temperature transition from the crystalline to the nematic phase, and stable nematic phases up to 300 °C and higher. Furthermore, in such polymers, the 2,5-FDCA and VA moieties require more thermal energy to become mobile compared to the phenyl rings in hydroxybenzoic acid, hydroquinone, and 4,4′-biphenol. Mechanical analysis shows that the performance of these polymers is correlated to their crystallinity. Surprisingly, a higher crystallinity results in ductile behavior, whereas a lower crystallinity results in a higher modulus, a higher stress at break, and a lower strain at break.
doi_str_mv 10.1021/ma500433e
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ma500433e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e31131516</sourcerecordid><originalsourceid>FETCH-LOGICAL-a392t-40d4091efcdab951c38cf26e4673e9bf61ecd1140a3b7b640aa658256aed32cb3</originalsourceid><addsrcrecordid>eNptkM1Kw0AURgdRsFYXvsFsXAiNzk8mTdzVYlVosWB1GyaTO2RKmikzqZjn8IWdtlo3ri58nHu490PokpIbShi9XUlBSMw5HKEeFYxEIuXiGPUIYXGUsWx4is68XxJCqYh5D30tKnAr2zq7NgrPbd2Bb8F5rJ1dYTYQ0WTjZFMaJV1hP7s6UCNlShwy_C4bU_8md_i1a9oKvPEDvLPKGs-DF1xrIGQzqFt8D5X8MNYNdoIZqCo41JYEp23YaRScoxMtaw8XP7OP3iYPi_FTNH15fB6PppHkGWujmJQxyShoVcoiE1TxVGmWQJwMOWSFTiioktKYSF4MiyRMmYiUiURCyZkqeB9d773KWe8d6HztzEq6Lqck37aZH9oM7NWeXUsfztWhE2X8YYGlggmSJX-cVD5f2o1rwgf_-L4BUxaCkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermotropic Polyesters from 2,5-Furandicarboxylic Acid and Vanillic Acid: Synthesis, Thermal Properties, Melt Behavior, and Mechanical Performance</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wilsens, Carolus H. R. M ; Verhoeven, Johan M. G. A ; Noordover, Bart A. J ; Hansen, Michael Ryan ; Auhl, Dietmar ; Rastogi, Sanjay</creator><creatorcontrib>Wilsens, Carolus H. R. M ; Verhoeven, Johan M. G. A ; Noordover, Bart A. J ; Hansen, Michael Ryan ; Auhl, Dietmar ; Rastogi, Sanjay</creatorcontrib><description>In this work, we address the synthesis of novel aromatic–aliphatic biobased polyesters showing thermotropic behavior in the melt. Successful incorporation of different biobased monomers such as 2,5-furandicarboxylic acid (2,5-FDCA), suberic acid (SuA), and vanillic acid (VA) in thermotropic liquid crystalline polymers (TLCPs) is made possible by performing synthesis at low temperatures. The chemical structures, molecular weights, phase transitions, thermal behavior, and mechanical performance of the synthesized polymers are studied using polarization optical microscopy, WAXD, DSC, TGA, DMTA, solid-state NMR spectroscopy, rheology, and tensile tests. It is shown that the incorporation of the rigid, aromatic 2,5-FDCA moiety enhances the formation of blocky copolymers, whereas the VA moiety tends to decrease the block formation. However, when combined, nonblocky TLCPs containing 2,5-FDCA and VA with high aromatic content can be obtained. These materials show a low temperature transition from the crystalline to the nematic phase, and stable nematic phases up to 300 °C and higher. Furthermore, in such polymers, the 2,5-FDCA and VA moieties require more thermal energy to become mobile compared to the phenyl rings in hydroxybenzoic acid, hydroquinone, and 4,4′-biphenol. Mechanical analysis shows that the performance of these polymers is correlated to their crystallinity. Surprisingly, a higher crystallinity results in ductile behavior, whereas a lower crystallinity results in a higher modulus, a higher stress at break, and a lower strain at break.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma500433e</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Polymers with particular structures ; Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><ispartof>Macromolecules, 2014-05, Vol.47 (10), p.3306-3316</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a392t-40d4091efcdab951c38cf26e4673e9bf61ecd1140a3b7b640aa658256aed32cb3</citedby><cites>FETCH-LOGICAL-a392t-40d4091efcdab951c38cf26e4673e9bf61ecd1140a3b7b640aa658256aed32cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28525096$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilsens, Carolus H. R. M</creatorcontrib><creatorcontrib>Verhoeven, Johan M. G. A</creatorcontrib><creatorcontrib>Noordover, Bart A. J</creatorcontrib><creatorcontrib>Hansen, Michael Ryan</creatorcontrib><creatorcontrib>Auhl, Dietmar</creatorcontrib><creatorcontrib>Rastogi, Sanjay</creatorcontrib><title>Thermotropic Polyesters from 2,5-Furandicarboxylic Acid and Vanillic Acid: Synthesis, Thermal Properties, Melt Behavior, and Mechanical Performance</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>In this work, we address the synthesis of novel aromatic–aliphatic biobased polyesters showing thermotropic behavior in the melt. Successful incorporation of different biobased monomers such as 2,5-furandicarboxylic acid (2,5-FDCA), suberic acid (SuA), and vanillic acid (VA) in thermotropic liquid crystalline polymers (TLCPs) is made possible by performing synthesis at low temperatures. The chemical structures, molecular weights, phase transitions, thermal behavior, and mechanical performance of the synthesized polymers are studied using polarization optical microscopy, WAXD, DSC, TGA, DMTA, solid-state NMR spectroscopy, rheology, and tensile tests. It is shown that the incorporation of the rigid, aromatic 2,5-FDCA moiety enhances the formation of blocky copolymers, whereas the VA moiety tends to decrease the block formation. However, when combined, nonblocky TLCPs containing 2,5-FDCA and VA with high aromatic content can be obtained. These materials show a low temperature transition from the crystalline to the nematic phase, and stable nematic phases up to 300 °C and higher. Furthermore, in such polymers, the 2,5-FDCA and VA moieties require more thermal energy to become mobile compared to the phenyl rings in hydroxybenzoic acid, hydroquinone, and 4,4′-biphenol. Mechanical analysis shows that the performance of these polymers is correlated to their crystallinity. Surprisingly, a higher crystallinity results in ductile behavior, whereas a lower crystallinity results in a higher modulus, a higher stress at break, and a lower strain at break.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polymers with particular structures</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkM1Kw0AURgdRsFYXvsFsXAiNzk8mTdzVYlVosWB1GyaTO2RKmikzqZjn8IWdtlo3ri58nHu490PokpIbShi9XUlBSMw5HKEeFYxEIuXiGPUIYXGUsWx4is68XxJCqYh5D30tKnAr2zq7NgrPbd2Bb8F5rJ1dYTYQ0WTjZFMaJV1hP7s6UCNlShwy_C4bU_8md_i1a9oKvPEDvLPKGs-DF1xrIGQzqFt8D5X8MNYNdoIZqCo41JYEp23YaRScoxMtaw8XP7OP3iYPi_FTNH15fB6PppHkGWujmJQxyShoVcoiE1TxVGmWQJwMOWSFTiioktKYSF4MiyRMmYiUiURCyZkqeB9d773KWe8d6HztzEq6Lqck37aZH9oM7NWeXUsfztWhE2X8YYGlggmSJX-cVD5f2o1rwgf_-L4BUxaCkg</recordid><startdate>20140527</startdate><enddate>20140527</enddate><creator>Wilsens, Carolus H. R. M</creator><creator>Verhoeven, Johan M. G. A</creator><creator>Noordover, Bart A. J</creator><creator>Hansen, Michael Ryan</creator><creator>Auhl, Dietmar</creator><creator>Rastogi, Sanjay</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140527</creationdate><title>Thermotropic Polyesters from 2,5-Furandicarboxylic Acid and Vanillic Acid: Synthesis, Thermal Properties, Melt Behavior, and Mechanical Performance</title><author>Wilsens, Carolus H. R. M ; Verhoeven, Johan M. G. A ; Noordover, Bart A. J ; Hansen, Michael Ryan ; Auhl, Dietmar ; Rastogi, Sanjay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a392t-40d4091efcdab951c38cf26e4673e9bf61ecd1140a3b7b640aa658256aed32cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polymers with particular structures</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilsens, Carolus H. R. M</creatorcontrib><creatorcontrib>Verhoeven, Johan M. G. A</creatorcontrib><creatorcontrib>Noordover, Bart A. J</creatorcontrib><creatorcontrib>Hansen, Michael Ryan</creatorcontrib><creatorcontrib>Auhl, Dietmar</creatorcontrib><creatorcontrib>Rastogi, Sanjay</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilsens, Carolus H. R. M</au><au>Verhoeven, Johan M. G. A</au><au>Noordover, Bart A. J</au><au>Hansen, Michael Ryan</au><au>Auhl, Dietmar</au><au>Rastogi, Sanjay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermotropic Polyesters from 2,5-Furandicarboxylic Acid and Vanillic Acid: Synthesis, Thermal Properties, Melt Behavior, and Mechanical Performance</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2014-05-27</date><risdate>2014</risdate><volume>47</volume><issue>10</issue><spage>3306</spage><epage>3316</epage><pages>3306-3316</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>In this work, we address the synthesis of novel aromatic–aliphatic biobased polyesters showing thermotropic behavior in the melt. Successful incorporation of different biobased monomers such as 2,5-furandicarboxylic acid (2,5-FDCA), suberic acid (SuA), and vanillic acid (VA) in thermotropic liquid crystalline polymers (TLCPs) is made possible by performing synthesis at low temperatures. The chemical structures, molecular weights, phase transitions, thermal behavior, and mechanical performance of the synthesized polymers are studied using polarization optical microscopy, WAXD, DSC, TGA, DMTA, solid-state NMR spectroscopy, rheology, and tensile tests. It is shown that the incorporation of the rigid, aromatic 2,5-FDCA moiety enhances the formation of blocky copolymers, whereas the VA moiety tends to decrease the block formation. However, when combined, nonblocky TLCPs containing 2,5-FDCA and VA with high aromatic content can be obtained. These materials show a low temperature transition from the crystalline to the nematic phase, and stable nematic phases up to 300 °C and higher. Furthermore, in such polymers, the 2,5-FDCA and VA moieties require more thermal energy to become mobile compared to the phenyl rings in hydroxybenzoic acid, hydroquinone, and 4,4′-biphenol. Mechanical analysis shows that the performance of these polymers is correlated to their crystallinity. Surprisingly, a higher crystallinity results in ductile behavior, whereas a lower crystallinity results in a higher modulus, a higher stress at break, and a lower strain at break.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma500433e</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-9297
ispartof Macromolecules, 2014-05, Vol.47 (10), p.3306-3316
issn 0024-9297
1520-5835
language eng
recordid cdi_crossref_primary_10_1021_ma500433e
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Applied sciences
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
Polymers with particular structures
Preparation, kinetics, thermodynamics, mechanism and catalysts
title Thermotropic Polyesters from 2,5-Furandicarboxylic Acid and Vanillic Acid: Synthesis, Thermal Properties, Melt Behavior, and Mechanical Performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermotropic%20Polyesters%20from%202,5-Furandicarboxylic%20Acid%20and%20Vanillic%20Acid:%20Synthesis,%20Thermal%20Properties,%20Melt%20Behavior,%20and%20Mechanical%20Performance&rft.jtitle=Macromolecules&rft.au=Wilsens,%20Carolus%20H.%20R.%20M&rft.date=2014-05-27&rft.volume=47&rft.issue=10&rft.spage=3306&rft.epage=3316&rft.pages=3306-3316&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma500433e&rft_dat=%3Cacs_cross%3Ee31131516%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a392t-40d4091efcdab951c38cf26e4673e9bf61ecd1140a3b7b640aa658256aed32cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true