Loading…
Coil−Stretch Transition of DNA Molecules in Slitlike Confinement
We experimentally investigate the influence of slitlike confinement on the coil−stretch transition of single DNA molecules in a homogeneous planar elongational electric field. We observe a more gradual coil−stretch transition characterized by two distinct critical strain rates for DNA in confinement...
Saved in:
Published in: | Macromolecules 2010-03, Vol.43 (6), p.3081-3089 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a390t-903fcb25dd677900f79f6b6e279b941b693252f85bee2edf33da757b181d57343 |
---|---|
cites | cdi_FETCH-LOGICAL-a390t-903fcb25dd677900f79f6b6e279b941b693252f85bee2edf33da757b181d57343 |
container_end_page | 3089 |
container_issue | 6 |
container_start_page | 3081 |
container_title | Macromolecules |
container_volume | 43 |
creator | Tang, Jing Trahan, Daniel W Doyle, Patrick S |
description | We experimentally investigate the influence of slitlike confinement on the coil−stretch transition of single DNA molecules in a homogeneous planar elongational electric field. We observe a more gradual coil−stretch transition characterized by two distinct critical strain rates for DNA in confinement, different from the unconfined case where a single critical strain rate exists. We postulate that the change in the coil−stretch transition is due to a modified spring law in confinement. We develop a dumbbell model to extract an effective spring law by following the relaxation of an initially stretched DNA. We then use this spring law and kinetic theory modeling to predict the extension and fluctuations of DNA in planar elongational fields. The model predicts that a two-stage coil−stretch transition emerges in confinement, in accord with experimental observations. |
doi_str_mv | 10.1021/ma902689c |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ma902689c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d47343760</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-903fcb25dd677900f79f6b6e279b941b693252f85bee2edf33da757b181d57343</originalsourceid><addsrcrecordid>eNptj71OwzAYRS0EEqUw8AZeGBgCn-04jscSfqUCQ8scOY4tXFy7stOBN2DmEXkSiorKwnSXc490EDolcEGAksulkkCrWuo9NCKcQsFrxvfRCICWhaRSHKKjnBcAhPCSjdBVE53_-vicDckM-hXPkwrZDS4GHC2-fprgx-iNXnuTsQt45t3g3ZvBTQzWBbM0YThGB1b5bE5-d4xebm_mzX0xfb57aCbTQjEJQyGBWd1R3veVEBLACmmrrjJUyE6WpKsko5zamnfGUNNbxnoluOhITXouWMnG6Hzr1SnmnIxtV8ktVXpvCbQ_8e0ufsOebdmVylp5u6nSLu8OlHLOgbE_TuncLuI6hU3BP75vs41lVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coil−Stretch Transition of DNA Molecules in Slitlike Confinement</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Tang, Jing ; Trahan, Daniel W ; Doyle, Patrick S</creator><creatorcontrib>Tang, Jing ; Trahan, Daniel W ; Doyle, Patrick S</creatorcontrib><description>We experimentally investigate the influence of slitlike confinement on the coil−stretch transition of single DNA molecules in a homogeneous planar elongational electric field. We observe a more gradual coil−stretch transition characterized by two distinct critical strain rates for DNA in confinement, different from the unconfined case where a single critical strain rate exists. We postulate that the change in the coil−stretch transition is due to a modified spring law in confinement. We develop a dumbbell model to extract an effective spring law by following the relaxation of an initially stretched DNA. We then use this spring law and kinetic theory modeling to predict the extension and fluctuations of DNA in planar elongational fields. The model predicts that a two-stage coil−stretch transition emerges in confinement, in accord with experimental observations.</description><identifier>ISSN: 0024-9297</identifier><identifier>EISSN: 1520-5835</identifier><identifier>DOI: 10.1021/ma902689c</identifier><identifier>CODEN: MAMOBX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Biological and medical sciences ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; In solution. Condensed state. Thin layers ; Miscellaneous ; Molecular biophysics ; Natural polymers ; Physico-chemical properties of biomolecules ; Physicochemistry of polymers</subject><ispartof>Macromolecules, 2010-03, Vol.43 (6), p.3081-3089</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-903fcb25dd677900f79f6b6e279b941b693252f85bee2edf33da757b181d57343</citedby><cites>FETCH-LOGICAL-a390t-903fcb25dd677900f79f6b6e279b941b693252f85bee2edf33da757b181d57343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22555033$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Jing</creatorcontrib><creatorcontrib>Trahan, Daniel W</creatorcontrib><creatorcontrib>Doyle, Patrick S</creatorcontrib><title>Coil−Stretch Transition of DNA Molecules in Slitlike Confinement</title><title>Macromolecules</title><addtitle>Macromolecules</addtitle><description>We experimentally investigate the influence of slitlike confinement on the coil−stretch transition of single DNA molecules in a homogeneous planar elongational electric field. We observe a more gradual coil−stretch transition characterized by two distinct critical strain rates for DNA in confinement, different from the unconfined case where a single critical strain rate exists. We postulate that the change in the coil−stretch transition is due to a modified spring law in confinement. We develop a dumbbell model to extract an effective spring law by following the relaxation of an initially stretched DNA. We then use this spring law and kinetic theory modeling to predict the extension and fluctuations of DNA in planar elongational fields. The model predicts that a two-stage coil−stretch transition emerges in confinement, in accord with experimental observations.</description><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>In solution. Condensed state. Thin layers</subject><subject>Miscellaneous</subject><subject>Molecular biophysics</subject><subject>Natural polymers</subject><subject>Physico-chemical properties of biomolecules</subject><subject>Physicochemistry of polymers</subject><issn>0024-9297</issn><issn>1520-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptj71OwzAYRS0EEqUw8AZeGBgCn-04jscSfqUCQ8scOY4tXFy7stOBN2DmEXkSiorKwnSXc490EDolcEGAksulkkCrWuo9NCKcQsFrxvfRCICWhaRSHKKjnBcAhPCSjdBVE53_-vicDckM-hXPkwrZDS4GHC2-fprgx-iNXnuTsQt45t3g3ZvBTQzWBbM0YThGB1b5bE5-d4xebm_mzX0xfb57aCbTQjEJQyGBWd1R3veVEBLACmmrrjJUyE6WpKsko5zamnfGUNNbxnoluOhITXouWMnG6Hzr1SnmnIxtV8ktVXpvCbQ_8e0ufsOebdmVylp5u6nSLu8OlHLOgbE_TuncLuI6hU3BP75vs41lVg</recordid><startdate>20100323</startdate><enddate>20100323</enddate><creator>Tang, Jing</creator><creator>Trahan, Daniel W</creator><creator>Doyle, Patrick S</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100323</creationdate><title>Coil−Stretch Transition of DNA Molecules in Slitlike Confinement</title><author>Tang, Jing ; Trahan, Daniel W ; Doyle, Patrick S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-903fcb25dd677900f79f6b6e279b941b693252f85bee2edf33da757b181d57343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>In solution. Condensed state. Thin layers</topic><topic>Miscellaneous</topic><topic>Molecular biophysics</topic><topic>Natural polymers</topic><topic>Physico-chemical properties of biomolecules</topic><topic>Physicochemistry of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Jing</creatorcontrib><creatorcontrib>Trahan, Daniel W</creatorcontrib><creatorcontrib>Doyle, Patrick S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Jing</au><au>Trahan, Daniel W</au><au>Doyle, Patrick S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coil−Stretch Transition of DNA Molecules in Slitlike Confinement</atitle><jtitle>Macromolecules</jtitle><addtitle>Macromolecules</addtitle><date>2010-03-23</date><risdate>2010</risdate><volume>43</volume><issue>6</issue><spage>3081</spage><epage>3089</epage><pages>3081-3089</pages><issn>0024-9297</issn><eissn>1520-5835</eissn><coden>MAMOBX</coden><abstract>We experimentally investigate the influence of slitlike confinement on the coil−stretch transition of single DNA molecules in a homogeneous planar elongational electric field. We observe a more gradual coil−stretch transition characterized by two distinct critical strain rates for DNA in confinement, different from the unconfined case where a single critical strain rate exists. We postulate that the change in the coil−stretch transition is due to a modified spring law in confinement. We develop a dumbbell model to extract an effective spring law by following the relaxation of an initially stretched DNA. We then use this spring law and kinetic theory modeling to predict the extension and fluctuations of DNA in planar elongational fields. The model predicts that a two-stage coil−stretch transition emerges in confinement, in accord with experimental observations.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ma902689c</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-9297 |
ispartof | Macromolecules, 2010-03, Vol.43 (6), p.3081-3089 |
issn | 0024-9297 1520-5835 |
language | eng |
recordid | cdi_crossref_primary_10_1021_ma902689c |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Applied sciences Biological and medical sciences Exact sciences and technology Fundamental and applied biological sciences. Psychology In solution. Condensed state. Thin layers Miscellaneous Molecular biophysics Natural polymers Physico-chemical properties of biomolecules Physicochemistry of polymers |
title | Coil−Stretch Transition of DNA Molecules in Slitlike Confinement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A32%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coil%E2%88%92Stretch%20Transition%20of%20DNA%20Molecules%20in%20Slitlike%20Confinement&rft.jtitle=Macromolecules&rft.au=Tang,%20Jing&rft.date=2010-03-23&rft.volume=43&rft.issue=6&rft.spage=3081&rft.epage=3089&rft.pages=3081-3089&rft.issn=0024-9297&rft.eissn=1520-5835&rft.coden=MAMOBX&rft_id=info:doi/10.1021/ma902689c&rft_dat=%3Cacs_cross%3Ed47343760%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a390t-903fcb25dd677900f79f6b6e279b941b693252f85bee2edf33da757b181d57343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |