Loading…
High-Mobility Nanotube Transistor Memory
A high-mobility (9000 cm2/V·s) semiconducting single-walled nanotube transistor is used to construct a nonvolatile charge-storage memory element operating at room temperature. Charges are stored by application of a few volts across the silicon dioxide dielectric between nanotube and silicon substrat...
Saved in:
Published in: | Nano letters 2002-07, Vol.2 (7), p.755-759 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a292t-500009ad8a5407668fd9cc93a5517f5eaa012de501ccc912f331225cf1388d273 |
---|---|
cites | cdi_FETCH-LOGICAL-a292t-500009ad8a5407668fd9cc93a5517f5eaa012de501ccc912f331225cf1388d273 |
container_end_page | 759 |
container_issue | 7 |
container_start_page | 755 |
container_title | Nano letters |
container_volume | 2 |
creator | Fuhrer, M. S Kim, B. M Dürkop, T Brintlinger, T |
description | A high-mobility (9000 cm2/V·s) semiconducting single-walled nanotube transistor is used to construct a nonvolatile charge-storage memory element operating at room temperature. Charges are stored by application of a few volts across the silicon dioxide dielectric between nanotube and silicon substrate, and detected by threshold shift of the nanotube field-effect transistor. The high mobility of the nanotube transistor allows the observation of discrete configurations of charge corresponding to rearrangement of a single or few electrons. These states may be reversibly written, read, and erased at temperatures up to 100 K. |
doi_str_mv | 10.1021/nl025577o |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_nl025577o</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c928323433</sourcerecordid><originalsourceid>FETCH-LOGICAL-a292t-500009ad8a5407668fd9cc93a5517f5eaa012de501ccc912f331225cf1388d273</originalsourceid><addsrcrecordid>eNptjzFPwzAUhC0EEqUw8A-yIMGQ9j27L4lHVFGK1MJS5ujVsSFVGiM7HfLvSVXUielOp0-nOyHuESYIEqdtA5Ioz_2FGCEpSDOt5eXZF7NrcRPjDgC0IhiJx2X99Z2u_bZu6q5P3rn13WFrk03gNtax8yFZ270P_a24ctxEe_enY_G5eNnMl-nq4_Vt_rxKWWrZpQTHaq4KphnkWVa4ShujFRNh7sgyA8rKEqAZYpROKZSSjENVFJXM1Vg8nXpN8DEG68qfUO859CVCebxYni8O7MOJZRPLnT-Edlj2D_cL4ZpOYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Mobility Nanotube Transistor Memory</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Fuhrer, M. S ; Kim, B. M ; Dürkop, T ; Brintlinger, T</creator><creatorcontrib>Fuhrer, M. S ; Kim, B. M ; Dürkop, T ; Brintlinger, T</creatorcontrib><description>A high-mobility (9000 cm2/V·s) semiconducting single-walled nanotube transistor is used to construct a nonvolatile charge-storage memory element operating at room temperature. Charges are stored by application of a few volts across the silicon dioxide dielectric between nanotube and silicon substrate, and detected by threshold shift of the nanotube field-effect transistor. The high mobility of the nanotube transistor allows the observation of discrete configurations of charge corresponding to rearrangement of a single or few electrons. These states may be reversibly written, read, and erased at temperatures up to 100 K.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl025577o</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2002-07, Vol.2 (7), p.755-759</ispartof><rights>Copyright © 2002 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a292t-500009ad8a5407668fd9cc93a5517f5eaa012de501ccc912f331225cf1388d273</citedby><cites>FETCH-LOGICAL-a292t-500009ad8a5407668fd9cc93a5517f5eaa012de501ccc912f331225cf1388d273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fuhrer, M. S</creatorcontrib><creatorcontrib>Kim, B. M</creatorcontrib><creatorcontrib>Dürkop, T</creatorcontrib><creatorcontrib>Brintlinger, T</creatorcontrib><title>High-Mobility Nanotube Transistor Memory</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>A high-mobility (9000 cm2/V·s) semiconducting single-walled nanotube transistor is used to construct a nonvolatile charge-storage memory element operating at room temperature. Charges are stored by application of a few volts across the silicon dioxide dielectric between nanotube and silicon substrate, and detected by threshold shift of the nanotube field-effect transistor. The high mobility of the nanotube transistor allows the observation of discrete configurations of charge corresponding to rearrangement of a single or few electrons. These states may be reversibly written, read, and erased at temperatures up to 100 K.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNptjzFPwzAUhC0EEqUw8A-yIMGQ9j27L4lHVFGK1MJS5ujVsSFVGiM7HfLvSVXUielOp0-nOyHuESYIEqdtA5Ioz_2FGCEpSDOt5eXZF7NrcRPjDgC0IhiJx2X99Z2u_bZu6q5P3rn13WFrk03gNtax8yFZ270P_a24ctxEe_enY_G5eNnMl-nq4_Vt_rxKWWrZpQTHaq4KphnkWVa4ShujFRNh7sgyA8rKEqAZYpROKZSSjENVFJXM1Vg8nXpN8DEG68qfUO859CVCebxYni8O7MOJZRPLnT-Edlj2D_cL4ZpOYw</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Fuhrer, M. S</creator><creator>Kim, B. M</creator><creator>Dürkop, T</creator><creator>Brintlinger, T</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020701</creationdate><title>High-Mobility Nanotube Transistor Memory</title><author>Fuhrer, M. S ; Kim, B. M ; Dürkop, T ; Brintlinger, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a292t-500009ad8a5407668fd9cc93a5517f5eaa012de501ccc912f331225cf1388d273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuhrer, M. S</creatorcontrib><creatorcontrib>Kim, B. M</creatorcontrib><creatorcontrib>Dürkop, T</creatorcontrib><creatorcontrib>Brintlinger, T</creatorcontrib><collection>CrossRef</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuhrer, M. S</au><au>Kim, B. M</au><au>Dürkop, T</au><au>Brintlinger, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Mobility Nanotube Transistor Memory</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2002-07-01</date><risdate>2002</risdate><volume>2</volume><issue>7</issue><spage>755</spage><epage>759</epage><pages>755-759</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>A high-mobility (9000 cm2/V·s) semiconducting single-walled nanotube transistor is used to construct a nonvolatile charge-storage memory element operating at room temperature. Charges are stored by application of a few volts across the silicon dioxide dielectric between nanotube and silicon substrate, and detected by threshold shift of the nanotube field-effect transistor. The high mobility of the nanotube transistor allows the observation of discrete configurations of charge corresponding to rearrangement of a single or few electrons. These states may be reversibly written, read, and erased at temperatures up to 100 K.</abstract><pub>American Chemical Society</pub><doi>10.1021/nl025577o</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2002-07, Vol.2 (7), p.755-759 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_crossref_primary_10_1021_nl025577o |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | High-Mobility Nanotube Transistor Memory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Mobility%20Nanotube%20Transistor%20Memory&rft.jtitle=Nano%20letters&rft.au=Fuhrer,%20M.%20S&rft.date=2002-07-01&rft.volume=2&rft.issue=7&rft.spage=755&rft.epage=759&rft.pages=755-759&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl025577o&rft_dat=%3Cacs_cross%3Ec928323433%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a292t-500009ad8a5407668fd9cc93a5517f5eaa012de501ccc912f331225cf1388d273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |