Loading…

Toward Atomic-Scale Device Fabrication in Silicon Using Scanning Probe Microscopy

We present a complete fabrication process for the creation of robust nano-and atomic-scale devices in silicon using a scanning tunneling microscope (STM). In particular we develop registration markers which, in combination with a custom-designed STM-scanning electron microscope (SEM) system, solve o...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2004-10, Vol.4 (10), p.1969-1973
Main Authors: Ruess, Frank J, Oberbeck, Lars, Simmons, Michelle Y, Goh, Kuan Eng J, Hamilton, Alex R, Hallam, Toby, Schofield, Steven R, Curson, Neil J, Clark, Robert G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a353t-8f343a772bac2d3b15af82f1af4da64c4e884d83d9c867d12d21d948e45d55793
cites cdi_FETCH-LOGICAL-a353t-8f343a772bac2d3b15af82f1af4da64c4e884d83d9c867d12d21d948e45d55793
container_end_page 1973
container_issue 10
container_start_page 1969
container_title Nano letters
container_volume 4
creator Ruess, Frank J
Oberbeck, Lars
Simmons, Michelle Y
Goh, Kuan Eng J
Hamilton, Alex R
Hallam, Toby
Schofield, Steven R
Curson, Neil J
Clark, Robert G
description We present a complete fabrication process for the creation of robust nano-and atomic-scale devices in silicon using a scanning tunneling microscope (STM). In particular we develop registration markers which, in combination with a custom-designed STM-scanning electron microscope (SEM) system, solve one of the key fabrication problems − connecting the STM-patterned buried phosphorus-doped devices, fabricated in the ultrahigh vacuum environment, to the outside world. The first devices demonstrate the feasibility of this technology and confirm the presence of quantum confinement in devices as electron propagation is laterally constricted by STM patterning.
doi_str_mv 10.1021/nl048808v
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_nl048808v</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d189288675</sourcerecordid><originalsourceid>FETCH-LOGICAL-a353t-8f343a772bac2d3b15af82f1af4da64c4e884d83d9c867d12d21d948e45d55793</originalsourceid><addsrcrecordid>eNptkEtPAjEUhRujiYgu_AfduHAx2udMZ0lQ1ASjBlhP7vRhSoaWtIjh3zsEgxtX9yy-c27OQeiakjtKGL0PHRFKEbU9QQMqOSnKumanR63EObrIeUkIqbkkA_Qxj9-QDB5t4srrYqahs_jBbr22eAJt8ho2PgbsA575zuteLrIPn7gnQ9iL9xRbi1-9TjHruN5dojMHXbZXv3eIFpPH-fi5mL49vYxH0wK45JtCOS44VBVrQTPDWyrBKeYoOGGgFFpYpYRR3NRalZWhzDBqaqGskEbKquZDdHvI3T_OybpmnfwK0q6hpNlv0Ry36NmbA7uG3Dd0CYL2-c9QMipUP9GRA52bZfxKoW_wT94PHtVqfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Toward Atomic-Scale Device Fabrication in Silicon Using Scanning Probe Microscopy</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Ruess, Frank J ; Oberbeck, Lars ; Simmons, Michelle Y ; Goh, Kuan Eng J ; Hamilton, Alex R ; Hallam, Toby ; Schofield, Steven R ; Curson, Neil J ; Clark, Robert G</creator><creatorcontrib>Ruess, Frank J ; Oberbeck, Lars ; Simmons, Michelle Y ; Goh, Kuan Eng J ; Hamilton, Alex R ; Hallam, Toby ; Schofield, Steven R ; Curson, Neil J ; Clark, Robert G</creatorcontrib><description>We present a complete fabrication process for the creation of robust nano-and atomic-scale devices in silicon using a scanning tunneling microscope (STM). In particular we develop registration markers which, in combination with a custom-designed STM-scanning electron microscope (SEM) system, solve one of the key fabrication problems − connecting the STM-patterned buried phosphorus-doped devices, fabricated in the ultrahigh vacuum environment, to the outside world. The first devices demonstrate the feasibility of this technology and confirm the presence of quantum confinement in devices as electron propagation is laterally constricted by STM patterning.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl048808v</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electron, ion, and scanning probe microscopy ; Exact sciences and technology ; Growth from vapor ; Materials science ; Methods of crystal growth; physics of crystal growth ; Physics ; Scanning probe microscopy: scanning tunneling, atomic force, scanning optical, magnetic force, etc ; Structure of solids and liquids; crystallography</subject><ispartof>Nano letters, 2004-10, Vol.4 (10), p.1969-1973</ispartof><rights>Copyright © 2004 American Chemical Society</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a353t-8f343a772bac2d3b15af82f1af4da64c4e884d83d9c867d12d21d948e45d55793</citedby><cites>FETCH-LOGICAL-a353t-8f343a772bac2d3b15af82f1af4da64c4e884d83d9c867d12d21d948e45d55793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16214815$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruess, Frank J</creatorcontrib><creatorcontrib>Oberbeck, Lars</creatorcontrib><creatorcontrib>Simmons, Michelle Y</creatorcontrib><creatorcontrib>Goh, Kuan Eng J</creatorcontrib><creatorcontrib>Hamilton, Alex R</creatorcontrib><creatorcontrib>Hallam, Toby</creatorcontrib><creatorcontrib>Schofield, Steven R</creatorcontrib><creatorcontrib>Curson, Neil J</creatorcontrib><creatorcontrib>Clark, Robert G</creatorcontrib><title>Toward Atomic-Scale Device Fabrication in Silicon Using Scanning Probe Microscopy</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We present a complete fabrication process for the creation of robust nano-and atomic-scale devices in silicon using a scanning tunneling microscope (STM). In particular we develop registration markers which, in combination with a custom-designed STM-scanning electron microscope (SEM) system, solve one of the key fabrication problems − connecting the STM-patterned buried phosphorus-doped devices, fabricated in the ultrahigh vacuum environment, to the outside world. The first devices demonstrate the feasibility of this technology and confirm the presence of quantum confinement in devices as electron propagation is laterally constricted by STM patterning.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electron, ion, and scanning probe microscopy</subject><subject>Exact sciences and technology</subject><subject>Growth from vapor</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Physics</subject><subject>Scanning probe microscopy: scanning tunneling, atomic force, scanning optical, magnetic force, etc</subject><subject>Structure of solids and liquids; crystallography</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNptkEtPAjEUhRujiYgu_AfduHAx2udMZ0lQ1ASjBlhP7vRhSoaWtIjh3zsEgxtX9yy-c27OQeiakjtKGL0PHRFKEbU9QQMqOSnKumanR63EObrIeUkIqbkkA_Qxj9-QDB5t4srrYqahs_jBbr22eAJt8ho2PgbsA575zuteLrIPn7gnQ9iL9xRbi1-9TjHruN5dojMHXbZXv3eIFpPH-fi5mL49vYxH0wK45JtCOS44VBVrQTPDWyrBKeYoOGGgFFpYpYRR3NRalZWhzDBqaqGskEbKquZDdHvI3T_OybpmnfwK0q6hpNlv0Ry36NmbA7uG3Dd0CYL2-c9QMipUP9GRA52bZfxKoW_wT94PHtVqfw</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Ruess, Frank J</creator><creator>Oberbeck, Lars</creator><creator>Simmons, Michelle Y</creator><creator>Goh, Kuan Eng J</creator><creator>Hamilton, Alex R</creator><creator>Hallam, Toby</creator><creator>Schofield, Steven R</creator><creator>Curson, Neil J</creator><creator>Clark, Robert G</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20041001</creationdate><title>Toward Atomic-Scale Device Fabrication in Silicon Using Scanning Probe Microscopy</title><author>Ruess, Frank J ; Oberbeck, Lars ; Simmons, Michelle Y ; Goh, Kuan Eng J ; Hamilton, Alex R ; Hallam, Toby ; Schofield, Steven R ; Curson, Neil J ; Clark, Robert G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a353t-8f343a772bac2d3b15af82f1af4da64c4e884d83d9c867d12d21d948e45d55793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electron, ion, and scanning probe microscopy</topic><topic>Exact sciences and technology</topic><topic>Growth from vapor</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Physics</topic><topic>Scanning probe microscopy: scanning tunneling, atomic force, scanning optical, magnetic force, etc</topic><topic>Structure of solids and liquids; crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruess, Frank J</creatorcontrib><creatorcontrib>Oberbeck, Lars</creatorcontrib><creatorcontrib>Simmons, Michelle Y</creatorcontrib><creatorcontrib>Goh, Kuan Eng J</creatorcontrib><creatorcontrib>Hamilton, Alex R</creatorcontrib><creatorcontrib>Hallam, Toby</creatorcontrib><creatorcontrib>Schofield, Steven R</creatorcontrib><creatorcontrib>Curson, Neil J</creatorcontrib><creatorcontrib>Clark, Robert G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruess, Frank J</au><au>Oberbeck, Lars</au><au>Simmons, Michelle Y</au><au>Goh, Kuan Eng J</au><au>Hamilton, Alex R</au><au>Hallam, Toby</au><au>Schofield, Steven R</au><au>Curson, Neil J</au><au>Clark, Robert G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Atomic-Scale Device Fabrication in Silicon Using Scanning Probe Microscopy</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2004-10-01</date><risdate>2004</risdate><volume>4</volume><issue>10</issue><spage>1969</spage><epage>1973</epage><pages>1969-1973</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We present a complete fabrication process for the creation of robust nano-and atomic-scale devices in silicon using a scanning tunneling microscope (STM). In particular we develop registration markers which, in combination with a custom-designed STM-scanning electron microscope (SEM) system, solve one of the key fabrication problems − connecting the STM-patterned buried phosphorus-doped devices, fabricated in the ultrahigh vacuum environment, to the outside world. The first devices demonstrate the feasibility of this technology and confirm the presence of quantum confinement in devices as electron propagation is laterally constricted by STM patterning.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/nl048808v</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2004-10, Vol.4 (10), p.1969-1973
issn 1530-6984
1530-6992
language eng
recordid cdi_crossref_primary_10_1021_nl048808v
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Electron, ion, and scanning probe microscopy
Exact sciences and technology
Growth from vapor
Materials science
Methods of crystal growth
physics of crystal growth
Physics
Scanning probe microscopy: scanning tunneling, atomic force, scanning optical, magnetic force, etc
Structure of solids and liquids
crystallography
title Toward Atomic-Scale Device Fabrication in Silicon Using Scanning Probe Microscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A08%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Atomic-Scale%20Device%20Fabrication%20in%20Silicon%20Using%20Scanning%20Probe%20Microscopy&rft.jtitle=Nano%20letters&rft.au=Ruess,%20Frank%20J&rft.date=2004-10-01&rft.volume=4&rft.issue=10&rft.spage=1969&rft.epage=1973&rft.pages=1969-1973&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl048808v&rft_dat=%3Cacs_cross%3Ed189288675%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a353t-8f343a772bac2d3b15af82f1af4da64c4e884d83d9c867d12d21d948e45d55793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true