Loading…
Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring made by Carbon Nanotube Coating with Polyelectrolytes
The idea of electronic yarns and textiles has appeared for quite some time, but their properties often do not meet practical expectations. In addition to chemical/mechanical durability and high electrical conductivity, important materials qualifications include weavablity, wearability, light weight,...
Saved in:
Published in: | Nano letters 2008-12, Vol.8 (12), p.4151-4157 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The idea of electronic yarns and textiles has appeared for quite some time, but their properties often do not meet practical expectations. In addition to chemical/mechanical durability and high electrical conductivity, important materials qualifications include weavablity, wearability, light weight, and “smart” functionalities. Here we demonstrate a simple process of transforming general commodity cotton threads into intelligent e-textiles using a polyelectrolyte-based coating with carbon nanotubes (CNTs). Efficient charge transport through the network of nanotubes (20 Ω/cm) and the possibility to engineer tunneling junctions make them promising materials for many high-knowledge-content garments. Along with integrated humidity sensing, we demonstrate that CNT−cotton threads can be used to detect albumin, the key protein of blood, with high sensitivity and selectivity. Notwithstanding future challenges, these proof-of-concept demonstrations provide a direct pathway for the application of these materials as wearable biomonitoring and telemedicine sensors, which are simple, sensitive, selective, and versatile. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/nl801495p |