Loading…

Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring made by Carbon Nanotube Coating with Polyelectrolytes

The idea of electronic yarns and textiles has appeared for quite some time, but their properties often do not meet practical expectations. In addition to chemical/mechanical durability and high electrical conductivity, important materials qualifications include weavablity, wearability, light weight,...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2008-12, Vol.8 (12), p.4151-4157
Main Authors: Shim, Bong Sup, Chen, Wei, Doty, Chris, Xu, Chuanlai, Kotov, Nicholas A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The idea of electronic yarns and textiles has appeared for quite some time, but their properties often do not meet practical expectations. In addition to chemical/mechanical durability and high electrical conductivity, important materials qualifications include weavablity, wearability, light weight, and “smart” functionalities. Here we demonstrate a simple process of transforming general commodity cotton threads into intelligent e-textiles using a polyelectrolyte-based coating with carbon nanotubes (CNTs). Efficient charge transport through the network of nanotubes (20 Ω/cm) and the possibility to engineer tunneling junctions make them promising materials for many high-knowledge-content garments. Along with integrated humidity sensing, we demonstrate that CNT−cotton threads can be used to detect albumin, the key protein of blood, with high sensitivity and selectivity. Notwithstanding future challenges, these proof-of-concept demonstrations provide a direct pathway for the application of these materials as wearable biomonitoring and telemedicine sensors, which are simple, sensitive, selective, and versatile.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl801495p