Loading…

Recovery of Permittivity and Depth from Near-Field Data as a Step toward Infrared Nanotomography

The increasing complexity of composite materials structured on the nanometer scale requires highly sensitive analytical tools for nanoscale chemical identification, ideally in three dimensions. While infrared near-field microscopy provides high chemical sensitivity and nanoscopic spatial resolution...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2014-07, Vol.8 (7), p.6911-6921
Main Authors: Govyadinov, Alexander A, Mastel, Stefan, Golmar, Federico, Chuvilin, Andrey, Carney, P. Scott, Hillenbrand, Rainer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a416t-e54e227be3d552fd2a5952cc4c86d7d9df356de3a4fa3fe47cc69f5f16bdc2e23
cites cdi_FETCH-LOGICAL-a416t-e54e227be3d552fd2a5952cc4c86d7d9df356de3a4fa3fe47cc69f5f16bdc2e23
container_end_page 6921
container_issue 7
container_start_page 6911
container_title ACS nano
container_volume 8
creator Govyadinov, Alexander A
Mastel, Stefan
Golmar, Federico
Chuvilin, Andrey
Carney, P. Scott
Hillenbrand, Rainer
description The increasing complexity of composite materials structured on the nanometer scale requires highly sensitive analytical tools for nanoscale chemical identification, ideally in three dimensions. While infrared near-field microscopy provides high chemical sensitivity and nanoscopic spatial resolution in two dimensions, the quantitative extraction of material properties of three-dimensionally structured samples has not been achieved yet. Here we introduce a method to perform rapid recovery of the thickness and permittivity of simple 3D structures (such as thin films and nanostructures) from near-field measurements, and provide its first experimental demonstration. This is accomplished via a novel nonlinear invertible model of the imaging process, taking advantage of the near-field data recorded at multiple harmonics of the oscillation frequency of the near-field probe. Our work enables quantitative nanoscale-resolved optical studies of thin films, coatings, and functionalization layers, as well as the structural analysis of multiphase materials, among others. It represents a major step toward the further goal of near-field nanotomography.
doi_str_mv 10.1021/nn5016314
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_nn5016314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c092475082</sourcerecordid><originalsourceid>FETCH-LOGICAL-a416t-e54e227be3d552fd2a5952cc4c86d7d9df356de3a4fa3fe47cc69f5f16bdc2e23</originalsourceid><addsrcrecordid>eNptkD1PwzAURS0EoqUw8AeQFwaGQGzHTjKiQqFSBYgPiS282s80VRNHjluUf09QoRPTu3o6uro6hJyy-JLFnF3VtYyZEizZI0OWCxXFmXrf32XJBuSobZdxLNMsVYdkwJMsT0UWD8nHM2q3Qd9RZ-kT-qoModyUoaNQG3qDTVhQ611FHxB8NClx1X8hAIWWAn0J2NDgvsAbOq2tB4-GPkDtgqvcp4dm0R2TAwurFk9-74i8TW5fx_fR7PFuOr6eRZAwFSKUCXKezlEYKbk1HGQuudaJzpRJTW6skMqggMSCsJikWqvcSsvU3GiOXIzIxbZXe9e2Hm3R-LIC3xUsLn4sFTtLPXu2ZZv1vEKzI_-09MD5FgDdFku39nU__Z-ib2Tcb1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recovery of Permittivity and Depth from Near-Field Data as a Step toward Infrared Nanotomography</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Govyadinov, Alexander A ; Mastel, Stefan ; Golmar, Federico ; Chuvilin, Andrey ; Carney, P. Scott ; Hillenbrand, Rainer</creator><creatorcontrib>Govyadinov, Alexander A ; Mastel, Stefan ; Golmar, Federico ; Chuvilin, Andrey ; Carney, P. Scott ; Hillenbrand, Rainer</creatorcontrib><description>The increasing complexity of composite materials structured on the nanometer scale requires highly sensitive analytical tools for nanoscale chemical identification, ideally in three dimensions. While infrared near-field microscopy provides high chemical sensitivity and nanoscopic spatial resolution in two dimensions, the quantitative extraction of material properties of three-dimensionally structured samples has not been achieved yet. Here we introduce a method to perform rapid recovery of the thickness and permittivity of simple 3D structures (such as thin films and nanostructures) from near-field measurements, and provide its first experimental demonstration. This is accomplished via a novel nonlinear invertible model of the imaging process, taking advantage of the near-field data recorded at multiple harmonics of the oscillation frequency of the near-field probe. Our work enables quantitative nanoscale-resolved optical studies of thin films, coatings, and functionalization layers, as well as the structural analysis of multiphase materials, among others. It represents a major step toward the further goal of near-field nanotomography.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn5016314</identifier><identifier>PMID: 24897380</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Infrared Rays ; Nanostructures - chemistry ; Nanotechnology - methods ; Silicon Dioxide - chemistry ; Tomography - methods</subject><ispartof>ACS nano, 2014-07, Vol.8 (7), p.6911-6921</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a416t-e54e227be3d552fd2a5952cc4c86d7d9df356de3a4fa3fe47cc69f5f16bdc2e23</citedby><cites>FETCH-LOGICAL-a416t-e54e227be3d552fd2a5952cc4c86d7d9df356de3a4fa3fe47cc69f5f16bdc2e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24897380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Govyadinov, Alexander A</creatorcontrib><creatorcontrib>Mastel, Stefan</creatorcontrib><creatorcontrib>Golmar, Federico</creatorcontrib><creatorcontrib>Chuvilin, Andrey</creatorcontrib><creatorcontrib>Carney, P. Scott</creatorcontrib><creatorcontrib>Hillenbrand, Rainer</creatorcontrib><title>Recovery of Permittivity and Depth from Near-Field Data as a Step toward Infrared Nanotomography</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The increasing complexity of composite materials structured on the nanometer scale requires highly sensitive analytical tools for nanoscale chemical identification, ideally in three dimensions. While infrared near-field microscopy provides high chemical sensitivity and nanoscopic spatial resolution in two dimensions, the quantitative extraction of material properties of three-dimensionally structured samples has not been achieved yet. Here we introduce a method to perform rapid recovery of the thickness and permittivity of simple 3D structures (such as thin films and nanostructures) from near-field measurements, and provide its first experimental demonstration. This is accomplished via a novel nonlinear invertible model of the imaging process, taking advantage of the near-field data recorded at multiple harmonics of the oscillation frequency of the near-field probe. Our work enables quantitative nanoscale-resolved optical studies of thin films, coatings, and functionalization layers, as well as the structural analysis of multiphase materials, among others. It represents a major step toward the further goal of near-field nanotomography.</description><subject>Infrared Rays</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology - methods</subject><subject>Silicon Dioxide - chemistry</subject><subject>Tomography - methods</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAURS0EoqUw8AeQFwaGQGzHTjKiQqFSBYgPiS282s80VRNHjluUf09QoRPTu3o6uro6hJyy-JLFnF3VtYyZEizZI0OWCxXFmXrf32XJBuSobZdxLNMsVYdkwJMsT0UWD8nHM2q3Qd9RZ-kT-qoModyUoaNQG3qDTVhQ611FHxB8NClx1X8hAIWWAn0J2NDgvsAbOq2tB4-GPkDtgqvcp4dm0R2TAwurFk9-74i8TW5fx_fR7PFuOr6eRZAwFSKUCXKezlEYKbk1HGQuudaJzpRJTW6skMqggMSCsJikWqvcSsvU3GiOXIzIxbZXe9e2Hm3R-LIC3xUsLn4sFTtLPXu2ZZv1vEKzI_-09MD5FgDdFku39nU__Z-ib2Tcb1Q</recordid><startdate>20140722</startdate><enddate>20140722</enddate><creator>Govyadinov, Alexander A</creator><creator>Mastel, Stefan</creator><creator>Golmar, Federico</creator><creator>Chuvilin, Andrey</creator><creator>Carney, P. Scott</creator><creator>Hillenbrand, Rainer</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140722</creationdate><title>Recovery of Permittivity and Depth from Near-Field Data as a Step toward Infrared Nanotomography</title><author>Govyadinov, Alexander A ; Mastel, Stefan ; Golmar, Federico ; Chuvilin, Andrey ; Carney, P. Scott ; Hillenbrand, Rainer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a416t-e54e227be3d552fd2a5952cc4c86d7d9df356de3a4fa3fe47cc69f5f16bdc2e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Infrared Rays</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology - methods</topic><topic>Silicon Dioxide - chemistry</topic><topic>Tomography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Govyadinov, Alexander A</creatorcontrib><creatorcontrib>Mastel, Stefan</creatorcontrib><creatorcontrib>Golmar, Federico</creatorcontrib><creatorcontrib>Chuvilin, Andrey</creatorcontrib><creatorcontrib>Carney, P. Scott</creatorcontrib><creatorcontrib>Hillenbrand, Rainer</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Govyadinov, Alexander A</au><au>Mastel, Stefan</au><au>Golmar, Federico</au><au>Chuvilin, Andrey</au><au>Carney, P. Scott</au><au>Hillenbrand, Rainer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery of Permittivity and Depth from Near-Field Data as a Step toward Infrared Nanotomography</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2014-07-22</date><risdate>2014</risdate><volume>8</volume><issue>7</issue><spage>6911</spage><epage>6921</epage><pages>6911-6921</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The increasing complexity of composite materials structured on the nanometer scale requires highly sensitive analytical tools for nanoscale chemical identification, ideally in three dimensions. While infrared near-field microscopy provides high chemical sensitivity and nanoscopic spatial resolution in two dimensions, the quantitative extraction of material properties of three-dimensionally structured samples has not been achieved yet. Here we introduce a method to perform rapid recovery of the thickness and permittivity of simple 3D structures (such as thin films and nanostructures) from near-field measurements, and provide its first experimental demonstration. This is accomplished via a novel nonlinear invertible model of the imaging process, taking advantage of the near-field data recorded at multiple harmonics of the oscillation frequency of the near-field probe. Our work enables quantitative nanoscale-resolved optical studies of thin films, coatings, and functionalization layers, as well as the structural analysis of multiphase materials, among others. It represents a major step toward the further goal of near-field nanotomography.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24897380</pmid><doi>10.1021/nn5016314</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2014-07, Vol.8 (7), p.6911-6921
issn 1936-0851
1936-086X
language eng
recordid cdi_crossref_primary_10_1021_nn5016314
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Infrared Rays
Nanostructures - chemistry
Nanotechnology - methods
Silicon Dioxide - chemistry
Tomography - methods
title Recovery of Permittivity and Depth from Near-Field Data as a Step toward Infrared Nanotomography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20of%20Permittivity%20and%20Depth%20from%20Near-Field%20Data%20as%20a%20Step%20toward%20Infrared%20Nanotomography&rft.jtitle=ACS%20nano&rft.au=Govyadinov,%20Alexander%20A&rft.date=2014-07-22&rft.volume=8&rft.issue=7&rft.spage=6911&rft.epage=6921&rft.pages=6911-6921&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn5016314&rft_dat=%3Cacs_cross%3Ec092475082%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a416t-e54e227be3d552fd2a5952cc4c86d7d9df356de3a4fa3fe47cc69f5f16bdc2e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/24897380&rfr_iscdi=true