Loading…

pH-Dependent Selective Transfer Hydrogenation of α,β-Unsaturated Carbonyls in Aqueous Media Utilizing Half-Sandwich Ruthenium(II) Complexes

Half-sandwich ruthenium(II) PTA complexes bearing the 1,2-dihydropentalenyl (C8H9 -, Dp) and indenyl (C9H7 -, Ind) ancillary ligands have been synthesized and characterized using multinuclear NMR spectroscopy and X-ray crystallography. The complexes DpRu(PTA)(PPh3)Cl, DpRu(PTA)2Cl, IndRu(PTA)(PPh3)C...

Full description

Saved in:
Bibliographic Details
Published in:Organometallics 2007-01, Vol.26 (2), p.429-438
Main Authors: Mebi, Charles A, Nair, Radhika P, Frost, Brian J
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Half-sandwich ruthenium(II) PTA complexes bearing the 1,2-dihydropentalenyl (C8H9 -, Dp) and indenyl (C9H7 -, Ind) ancillary ligands have been synthesized and characterized using multinuclear NMR spectroscopy and X-ray crystallography. The complexes DpRu(PTA)(PPh3)Cl, DpRu(PTA)2Cl, IndRu(PTA)(PPh3)Cl, and [IndRu(PTA)2(PPh3)]Cl were obtained in good to excellent yields. The solid-state structures of these compounds exhibit piano stool geometries with η5-coordination of the indenyl and dihydropentalenyl moieties. DpRu(PTA)2Cl is water-soluble (S 25 ° C = 43 mg/mL), while the mixed phosphine compounds are slightly soluble in acidic solutions. The Ru−H complexes, Cp‘Ru(PTA)(PPh3)H (Cp‘ = Ind, Cp), have been synthesized in good yield and spectroscopically and structurally characterized. The ruthenium hydrides undergo an H/D exchange reaction with CD3OD with relative rates CpRu(PTA)(PPh3)H ≫ IndRu(PTA)(PPh3)H > CpRu(PTA)2H. The air-stable Cp‘Ru(PTA)(PR3)Cl complexes (Cp‘ = Cp, Dp, Ind; PR3 = PPh3 or PTA) exhibit activity in the regioselective transfer hydrogenation of α,β-unsaturated carbonyls in aqueous media with HCOONa, HCOOH, or isopropanol/Na2CO3 serving as the hydrogen source. They were found to be effective in the selective reduction of the carbonyl functionality of cinnamaldehyde and the CC bond of benzylidene acetone and chalcone. IndRu(PTA)(PPh3)Cl was less active than Cp‘Ru(PTA)(PPh3)Cl (Cp‘ = Cp or Dp). Results of the transfer hydrogenation of unsaturated substrates using CpRu(PTA)(PPh3)H are also reported.
ISSN:0276-7333
1520-6041
DOI:10.1021/om060892x