Loading…

Unraveling the Mechanism of Polymerization with the Phillips Catalyst

The mechanism of polymer chain growth at the Phillips catalyst has been studied, with the three prevailing mechanistic proposals, the Cosee−Arlman, Green−Rooney, and metallacycle mechanisms, considered. Through analysis of low molecular weight oligomers/polymers formed during ethylene/α-olefin copol...

Full description

Saved in:
Bibliographic Details
Published in:Organometallics 2010-11, Vol.29 (22), p.6111-6116
Main Authors: McGuinness, David S, Davies, Noel W, Horne, James, Ivanov, Ivan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a259t-b279c9cd0e464adadc93139400437292bb4e93b58c1c3ee7b11391b7f270d5003
cites cdi_FETCH-LOGICAL-a259t-b279c9cd0e464adadc93139400437292bb4e93b58c1c3ee7b11391b7f270d5003
container_end_page 6116
container_issue 22
container_start_page 6111
container_title Organometallics
container_volume 29
creator McGuinness, David S
Davies, Noel W
Horne, James
Ivanov, Ivan
description The mechanism of polymer chain growth at the Phillips catalyst has been studied, with the three prevailing mechanistic proposals, the Cosee−Arlman, Green−Rooney, and metallacycle mechanisms, considered. Through analysis of low molecular weight oligomers/polymers formed during ethylene/α-olefin copolymerization with labeled monomers, it is shown that the isotopomer distribution is inconsistent with a metallacycle mechanism. Further analysis of polymer formed by copolymerization of labeled ethylene was used to rule out a Green−Rooney mechanism. The results support the notion of chain growth via a Cossee−Arlman process.
doi_str_mv 10.1021/om100883n
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_om100883n</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c205108489</sourcerecordid><originalsourceid>FETCH-LOGICAL-a259t-b279c9cd0e464adadc93139400437292bb4e93b58c1c3ee7b11391b7f270d5003</originalsourceid><addsrcrecordid>eNptjzFPwzAYRC0EEqEw8A-yMDAEPttJHI8oKgWpiA50jmzHIa4cu7IDKPx6AkVMTDfc0-keQpcYbjAQfOsHDFBV1B2hBBcEshJyfIwSIKzMGKX0FJ3FuAOAklGSoOXWBfGurXGv6djr9EmrXjgTh9R36cbbadDBfIrReJd-mLH_gTa9sdbsY1qLUdgpjufopBM26ovfXKDt_fKlfsjWz6vH-m6dCVLwMZOEccVVCzovc9GKVnGKKc8BcsoIJ1LmmlNZVAorqjWTeG6xZB1h0BYAdIGuD7sq-BiD7pp9MIMIU4Oh-fZv_vxn9urAChWbnX8Lbn72D_cFqZZZgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unraveling the Mechanism of Polymerization with the Phillips Catalyst</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>McGuinness, David S ; Davies, Noel W ; Horne, James ; Ivanov, Ivan</creator><creatorcontrib>McGuinness, David S ; Davies, Noel W ; Horne, James ; Ivanov, Ivan</creatorcontrib><description>The mechanism of polymer chain growth at the Phillips catalyst has been studied, with the three prevailing mechanistic proposals, the Cosee−Arlman, Green−Rooney, and metallacycle mechanisms, considered. Through analysis of low molecular weight oligomers/polymers formed during ethylene/α-olefin copolymerization with labeled monomers, it is shown that the isotopomer distribution is inconsistent with a metallacycle mechanism. Further analysis of polymer formed by copolymerization of labeled ethylene was used to rule out a Green−Rooney mechanism. The results support the notion of chain growth via a Cossee−Arlman process.</description><identifier>ISSN: 0276-7333</identifier><identifier>EISSN: 1520-6041</identifier><identifier>DOI: 10.1021/om100883n</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Organometallics, 2010-11, Vol.29 (22), p.6111-6116</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a259t-b279c9cd0e464adadc93139400437292bb4e93b58c1c3ee7b11391b7f270d5003</citedby><cites>FETCH-LOGICAL-a259t-b279c9cd0e464adadc93139400437292bb4e93b58c1c3ee7b11391b7f270d5003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>McGuinness, David S</creatorcontrib><creatorcontrib>Davies, Noel W</creatorcontrib><creatorcontrib>Horne, James</creatorcontrib><creatorcontrib>Ivanov, Ivan</creatorcontrib><title>Unraveling the Mechanism of Polymerization with the Phillips Catalyst</title><title>Organometallics</title><addtitle>Organometallics</addtitle><description>The mechanism of polymer chain growth at the Phillips catalyst has been studied, with the three prevailing mechanistic proposals, the Cosee−Arlman, Green−Rooney, and metallacycle mechanisms, considered. Through analysis of low molecular weight oligomers/polymers formed during ethylene/α-olefin copolymerization with labeled monomers, it is shown that the isotopomer distribution is inconsistent with a metallacycle mechanism. Further analysis of polymer formed by copolymerization of labeled ethylene was used to rule out a Green−Rooney mechanism. The results support the notion of chain growth via a Cossee−Arlman process.</description><issn>0276-7333</issn><issn>1520-6041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptjzFPwzAYRC0EEqEw8A-yMDAEPttJHI8oKgWpiA50jmzHIa4cu7IDKPx6AkVMTDfc0-keQpcYbjAQfOsHDFBV1B2hBBcEshJyfIwSIKzMGKX0FJ3FuAOAklGSoOXWBfGurXGv6djr9EmrXjgTh9R36cbbadDBfIrReJd-mLH_gTa9sdbsY1qLUdgpjufopBM26ovfXKDt_fKlfsjWz6vH-m6dCVLwMZOEccVVCzovc9GKVnGKKc8BcsoIJ1LmmlNZVAorqjWTeG6xZB1h0BYAdIGuD7sq-BiD7pp9MIMIU4Oh-fZv_vxn9urAChWbnX8Lbn72D_cFqZZZgg</recordid><startdate>20101122</startdate><enddate>20101122</enddate><creator>McGuinness, David S</creator><creator>Davies, Noel W</creator><creator>Horne, James</creator><creator>Ivanov, Ivan</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20101122</creationdate><title>Unraveling the Mechanism of Polymerization with the Phillips Catalyst</title><author>McGuinness, David S ; Davies, Noel W ; Horne, James ; Ivanov, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a259t-b279c9cd0e464adadc93139400437292bb4e93b58c1c3ee7b11391b7f270d5003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGuinness, David S</creatorcontrib><creatorcontrib>Davies, Noel W</creatorcontrib><creatorcontrib>Horne, James</creatorcontrib><creatorcontrib>Ivanov, Ivan</creatorcontrib><collection>CrossRef</collection><jtitle>Organometallics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGuinness, David S</au><au>Davies, Noel W</au><au>Horne, James</au><au>Ivanov, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the Mechanism of Polymerization with the Phillips Catalyst</atitle><jtitle>Organometallics</jtitle><addtitle>Organometallics</addtitle><date>2010-11-22</date><risdate>2010</risdate><volume>29</volume><issue>22</issue><spage>6111</spage><epage>6116</epage><pages>6111-6116</pages><issn>0276-7333</issn><eissn>1520-6041</eissn><abstract>The mechanism of polymer chain growth at the Phillips catalyst has been studied, with the three prevailing mechanistic proposals, the Cosee−Arlman, Green−Rooney, and metallacycle mechanisms, considered. Through analysis of low molecular weight oligomers/polymers formed during ethylene/α-olefin copolymerization with labeled monomers, it is shown that the isotopomer distribution is inconsistent with a metallacycle mechanism. Further analysis of polymer formed by copolymerization of labeled ethylene was used to rule out a Green−Rooney mechanism. The results support the notion of chain growth via a Cossee−Arlman process.</abstract><pub>American Chemical Society</pub><doi>10.1021/om100883n</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0276-7333
ispartof Organometallics, 2010-11, Vol.29 (22), p.6111-6116
issn 0276-7333
1520-6041
language eng
recordid cdi_crossref_primary_10_1021_om100883n
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Unraveling the Mechanism of Polymerization with the Phillips Catalyst
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20Mechanism%20of%20Polymerization%20with%20the%20Phillips%20Catalyst&rft.jtitle=Organometallics&rft.au=McGuinness,%20David%20S&rft.date=2010-11-22&rft.volume=29&rft.issue=22&rft.spage=6111&rft.epage=6116&rft.pages=6111-6116&rft.issn=0276-7333&rft.eissn=1520-6041&rft_id=info:doi/10.1021/om100883n&rft_dat=%3Cacs_cross%3Ec205108489%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a259t-b279c9cd0e464adadc93139400437292bb4e93b58c1c3ee7b11391b7f270d5003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true