Loading…
Computational Discovery of Stable Transition-Metal Vinylidene Complexes
Experimental results have long suggested that catalyst optimization is an inherently multivariate process, requiring the screening of reaction conditions (temperature, pressure, solvents, precursors, etc.), catalyst structure (metal and ligands), and substrate scope. With a view to demonstrating the...
Saved in:
Published in: | Organometallics 2014-04, Vol.33 (7), p.1751-1761 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Experimental results have long suggested that catalyst optimization is an inherently multivariate process, requiring the screening of reaction conditions (temperature, pressure, solvents, precursors, etc.), catalyst structure (metal and ligands), and substrate scope. With a view to demonstrating the feasibility and utility of multivariate computational screening of organometallic catalysts, we have investigated the structural and electronic properties of a library of transition-metal-coordinated alkyne and vinylidene tautomers in different coordination environments. By varying the substituents on the organic moiety of 60 alkyne/vinylidene pairs we were able to capture and quantify the key structural and electronic effects on tautomer preference. For a carefully selected subset of substituents, the effects of metal and ancillary ligands were then explored. We have been able to formulate a protocol for assessing the stabilization of vinylidenes in transition-metal complexes, suggesting that the d6 square-based-pyramidal metal fragment [RuCl2(PR2 3)(CCHR1)], combined with electron-withdrawing substituents R1 and electron-rich groups R2, would provide the ideal conditions favoring the vinylidene form thermodynamically. |
---|---|
ISSN: | 0276-7333 1520-6041 |
DOI: | 10.1021/om500114u |