Loading…

Heterobimetallic Indenyl Complexes. Kinetics and Mechanism of Substitution and Exchange Reactions of trans-[Cr(CO)3-indenyl-Rh(CO)2] with Olefins

The trans coordination of the benzene ring of the indenyl-Rh(CO)2 complex with tricarbonylchromium strongly enhances the rate of substitution of CO's with bidentate olefins, 1,5-cyclooctadiene (COD) and norbornadiene (NBD) (“extra-indenyl effect”). The activation parameters suggest an associati...

Full description

Saved in:
Bibliographic Details
Published in:Organometallics 1996-03, Vol.15 (6), p.1630-1636
Main Authors: Bonifaci, Chiara, Carta, Giovanni, Ceccon, Alberto, Gambaro, Alessandro, Santi, Saverio, Venzo, Alfonso
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The trans coordination of the benzene ring of the indenyl-Rh(CO)2 complex with tricarbonylchromium strongly enhances the rate of substitution of CO's with bidentate olefins, 1,5-cyclooctadiene (COD) and norbornadiene (NBD) (“extra-indenyl effect”). The activation parameters suggest an associative reaction pathway assumed to proceed via the intermediacy of a nonisolable low-hapticity species, η1-indenyl-Rh(CO)2(L2). In addition, the rate of exchange of the Cr(CO)3 group of the complexes trans-[Cr(CO)3-indenyl-Rh(CO)2], 3, and trans-[Cr(CO)3-indenyl-Rh(COD)], 3a, and suitable acceptors (hexamethylbenzene and cycloheptatriene) is markedly increased with respect to that measured for the same reaction in the monometallic complex η-naphthalene-Cr(CO)3 (“extra-naphthalene effect”). These mutual effects of the Cr(CO)3 and RhL2 units are transmitted through the 10 π electron indenyl framework, and the results obtained are in agreement with the existence of an haptomeric ground-state equilibrium between the two isomers trans-[Cr(CO)3-μ,η6:η3-indenyl-RhL2], I, and trans-[Cr(CO)3-μ,η4:η5-indenyl-RhL2], II.
ISSN:0276-7333
1520-6041
DOI:10.1021/om950775u