Loading…
Rapid Identification of a Scalable Catalyst for the Asymmetric Hydrogenation of a Sterically Demanding Aryl Enamide
High throughput screening was used to find a cost-effective and scalable catalyst for the asymmetric hydrogenation of a sterically demanding enamide as an intermediate towards a new potent melanocortin receptor agonist useful in the treatment of obesity. Lessons drawn from the testing of a first lib...
Saved in:
Published in: | Organic process research & development 2010-05, Vol.14 (3), p.568-573 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High throughput screening was used to find a cost-effective and scalable catalyst for the asymmetric hydrogenation of a sterically demanding enamide as an intermediate towards a new potent melanocortin receptor agonist useful in the treatment of obesity. Lessons drawn from the testing of a first library of 96 chiral monodentate phosphoramidites led to the design of a second focused library of 16 chiral ligands, allowing the discovery of a new efficient catalyst. This catalyst was based on rhodium and a bulky monodentate phosphite ligand. The catalyst was scaled up and used in the kilogram production of the desired bulky chiral amide. |
---|---|
ISSN: | 1083-6160 1520-586X |
DOI: | 10.1021/op100011y |