Loading…

Site Specific N 6-(2-Hydroxy-3,4-epoxybut-1-yl)adenine Oligodeoxynucleotide Adducts of 1,2,3,4-Diepoxybutane:  Synthesis and Stability at Physiological pH

1,2,3,4-Diepoxybutane (DEB) is an important metabolite of 1,3-butadiene, a high volume industrial chemical classified as a human and animal carcinogen. DEB is a bifunctional alkylating agent that exhibits both mutagenic and cytotoxic activity, presumably a result of its ability to form bifunctional...

Full description

Saved in:
Bibliographic Details
Published in:Chemical research in toxicology 2007-04, Vol.20 (4), p.641-649
Main Authors: Antsypovich, Sergey, Quirk-Dorr, Danaè, Pitts, Crystal, Tretyakova, Natalia
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:1,2,3,4-Diepoxybutane (DEB) is an important metabolite of 1,3-butadiene, a high volume industrial chemical classified as a human and animal carcinogen. DEB is a bifunctional alkylating agent that exhibits both mutagenic and cytotoxic activity, presumably a result of its ability to form bifunctional DNA adducts. Initial reactions of DEB with DNA produce 2-hydroxy-3,4-epoxybut-1-yl (HEB) lesions at guanine and adenine nucleobases. The epoxy group of the monoadduct is inherently reactive and can then undergo further reactions, for example, hydrolysis to the corresponding 2,3,4-trihydroxybutyl adducts and/or second alkylation to yield 2,3-butanediol cross-links. In the present work, synthetic DNA 16-mers containing structurally defined racemic N 6-(2-hydroxy-3,4-epoxybut-1-yl)-2‘-deoxyadenosine (N6-HEB-dA) adducts (5‘-AATTATGTXACGGTAG-3‘, where X = N6-HEB-dA) were prepared by coupling 6-chloropurine-containing oligodeoxynucleotides with 1-amino-2-hydroxy-3,4-epoxybutane. The latter was generated in situ from the corresponding Fmoc-protected amino epoxide. The N6-HEB-dA-containing DNA oligomer was isolated by reverse-phase HPLC, and the presence of N6-HEB-dA in its structure was confirmed by molecular weight determination and by HPLC-UV-ESI+-MS/MS analyses of enzymatic digests. An independently prepared N6-HEB-dA nucleoside served as an authentic standard. The fate of N6-HEB-dA within DNA at physiological conditions in the presence of various nucleophiles (e.g., cysteine, dG, and the complementary DNA strand) was investigated. Under all conditions tested, N6-HEB-dA rapidly cyclized to produce previously unidentified exocyclic dA lesions (t 1/2 < 2 h at physiological conditions). Only trace amounts of hydrolyzed and cross-linked products were detected, suggesting that the rate of cyclization was much greater than the rates of other reactions at the epoxide ring. These results indicate that DEB-induced alkylation of N6-adenine in DNA is unlikely to lead to DNA−DNA cross-linking but instead can result in the formation of exocyclic dA adducts.
ISSN:0893-228X
1520-5010
DOI:10.1021/tx060178k