Loading…

Space and time variation of δ 18 O andδD in precipitation: Can paleotemperature be estimated from ice cores?

A one‐dimensional model of meridional water vapor transport is used to evaluate the factors that control the spatial and temporal variations of oxygen (δ 18 O) and hydrogen (δD) isotopic ratios in global precipitation. The model extends Rayleigh descriptions of isotopes in precipitation by including...

Full description

Saved in:
Bibliographic Details
Published in:Global biogeochemical cycles 2000-09, Vol.14 (3), p.851-861
Main Authors: Hendricks, M. B., DePaolo, D. J., Cohen, R. C.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c808-4b03bd3f4c4b5c53095b7a661cf8f7d15e5c59260897e08261a70f427dd36b123
cites cdi_FETCH-LOGICAL-c808-4b03bd3f4c4b5c53095b7a661cf8f7d15e5c59260897e08261a70f427dd36b123
container_end_page 861
container_issue 3
container_start_page 851
container_title Global biogeochemical cycles
container_volume 14
creator Hendricks, M. B.
DePaolo, D. J.
Cohen, R. C.
description A one‐dimensional model of meridional water vapor transport is used to evaluate the factors that control the spatial and temporal variations of oxygen (δ 18 O) and hydrogen (δD) isotopic ratios in global precipitation. The model extends Rayleigh descriptions of isotopes in precipitation by including (1) effects of recharge to air masses by evaporation and (2) horizontal transport by both eddy fluxes and advection. Globally, spatial variations in precipitation δ 18 O and δD depend on the ratio of evaporation to the product of horizontal moisture flux and horizontal temperature gradient. At low latitudes, where this ratio is large, precipitation δ 18 O and δD are closely tied to the isotopic ratios of oceanic evaporation. At high latitudes the ratio is small, and δ 18 O and δD are controlled by the ratio of advective transport to eddy transport. Transport by eddy fluxes induces less fractionation than transport by advection, resulting in a smaller gradient of isotopic ratios with temperature. The model‐predicted temporal relationships between δ 18 O (or δD) of Antarctic precipitation and temperature do not necessarily coincide with the modern spatial relationship and depend strongly on the proximity of the precipitation site to the ocean evaporation source. Sensitivity of δ 18 O to temporal changes in local surface temperature is low at coastal sites and increases with distance inland. These results suggest a possible explanation of the apparent discrepancy between borehole temperature inversion estimates of glacial temperatures and temperatures inferred from the modern spatial δ 18 O—surface temperature relationship.
doi_str_mv 10.1029/1999GB001198
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1029_1999GB001198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1029_1999GB001198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c808-4b03bd3f4c4b5c53095b7a661cf8f7d15e5c59260897e08261a70f427dd36b123</originalsourceid><addsrcrecordid>eNpNUM1KxDAYDKJgXb35AN8DWM1f08SLaNVVWNiDey9p-gUi2x-SKvhe-xz7THbVg6eBmWFmGEIuGb1mlJsbZoxZPlDKmNFHJGNGytxwLo9JRrVWueJCnZKzlN5njywKk5H-bbQOwfYtTKFD-LQx2CkMPQwe9jtgGtYHdb97hNDDGNGFMUw_lluo7EzZLQ4TdiNGO31EhAYB0xxmJ2zBx6GDMDe4IWK6Oycn3m4TXvzhgmyenzbVS75aL1-r-1XuNNW5bKhoWuGlk03hCkFN0ZRWKea89mXLCpxZwxXVpkSquWK2pF7ysm2FahgXC3L1G-vikFJEX49xHhS_akbrw1X1_6vENyu1XHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Space and time variation of δ 18 O andδD in precipitation: Can paleotemperature be estimated from ice cores?</title><source>Wiley</source><source>Wiley-Blackwell AGU Digital Archive</source><creator>Hendricks, M. B. ; DePaolo, D. J. ; Cohen, R. C.</creator><creatorcontrib>Hendricks, M. B. ; DePaolo, D. J. ; Cohen, R. C.</creatorcontrib><description>A one‐dimensional model of meridional water vapor transport is used to evaluate the factors that control the spatial and temporal variations of oxygen (δ 18 O) and hydrogen (δD) isotopic ratios in global precipitation. The model extends Rayleigh descriptions of isotopes in precipitation by including (1) effects of recharge to air masses by evaporation and (2) horizontal transport by both eddy fluxes and advection. Globally, spatial variations in precipitation δ 18 O and δD depend on the ratio of evaporation to the product of horizontal moisture flux and horizontal temperature gradient. At low latitudes, where this ratio is large, precipitation δ 18 O and δD are closely tied to the isotopic ratios of oceanic evaporation. At high latitudes the ratio is small, and δ 18 O and δD are controlled by the ratio of advective transport to eddy transport. Transport by eddy fluxes induces less fractionation than transport by advection, resulting in a smaller gradient of isotopic ratios with temperature. The model‐predicted temporal relationships between δ 18 O (or δD) of Antarctic precipitation and temperature do not necessarily coincide with the modern spatial relationship and depend strongly on the proximity of the precipitation site to the ocean evaporation source. Sensitivity of δ 18 O to temporal changes in local surface temperature is low at coastal sites and increases with distance inland. These results suggest a possible explanation of the apparent discrepancy between borehole temperature inversion estimates of glacial temperatures and temperatures inferred from the modern spatial δ 18 O—surface temperature relationship.</description><identifier>ISSN: 0886-6236</identifier><identifier>EISSN: 1944-9224</identifier><identifier>DOI: 10.1029/1999GB001198</identifier><language>eng</language><ispartof>Global biogeochemical cycles, 2000-09, Vol.14 (3), p.851-861</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c808-4b03bd3f4c4b5c53095b7a661cf8f7d15e5c59260897e08261a70f427dd36b123</citedby><cites>FETCH-LOGICAL-c808-4b03bd3f4c4b5c53095b7a661cf8f7d15e5c59260897e08261a70f427dd36b123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hendricks, M. B.</creatorcontrib><creatorcontrib>DePaolo, D. J.</creatorcontrib><creatorcontrib>Cohen, R. C.</creatorcontrib><title>Space and time variation of δ 18 O andδD in precipitation: Can paleotemperature be estimated from ice cores?</title><title>Global biogeochemical cycles</title><description>A one‐dimensional model of meridional water vapor transport is used to evaluate the factors that control the spatial and temporal variations of oxygen (δ 18 O) and hydrogen (δD) isotopic ratios in global precipitation. The model extends Rayleigh descriptions of isotopes in precipitation by including (1) effects of recharge to air masses by evaporation and (2) horizontal transport by both eddy fluxes and advection. Globally, spatial variations in precipitation δ 18 O and δD depend on the ratio of evaporation to the product of horizontal moisture flux and horizontal temperature gradient. At low latitudes, where this ratio is large, precipitation δ 18 O and δD are closely tied to the isotopic ratios of oceanic evaporation. At high latitudes the ratio is small, and δ 18 O and δD are controlled by the ratio of advective transport to eddy transport. Transport by eddy fluxes induces less fractionation than transport by advection, resulting in a smaller gradient of isotopic ratios with temperature. The model‐predicted temporal relationships between δ 18 O (or δD) of Antarctic precipitation and temperature do not necessarily coincide with the modern spatial relationship and depend strongly on the proximity of the precipitation site to the ocean evaporation source. Sensitivity of δ 18 O to temporal changes in local surface temperature is low at coastal sites and increases with distance inland. These results suggest a possible explanation of the apparent discrepancy between borehole temperature inversion estimates of glacial temperatures and temperatures inferred from the modern spatial δ 18 O—surface temperature relationship.</description><issn>0886-6236</issn><issn>1944-9224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpNUM1KxDAYDKJgXb35AN8DWM1f08SLaNVVWNiDey9p-gUi2x-SKvhe-xz7THbVg6eBmWFmGEIuGb1mlJsbZoxZPlDKmNFHJGNGytxwLo9JRrVWueJCnZKzlN5njywKk5H-bbQOwfYtTKFD-LQx2CkMPQwe9jtgGtYHdb97hNDDGNGFMUw_lluo7EzZLQ4TdiNGO31EhAYB0xxmJ2zBx6GDMDe4IWK6Oycn3m4TXvzhgmyenzbVS75aL1-r-1XuNNW5bKhoWuGlk03hCkFN0ZRWKea89mXLCpxZwxXVpkSquWK2pF7ysm2FahgXC3L1G-vikFJEX49xHhS_akbrw1X1_6vENyu1XHY</recordid><startdate>200009</startdate><enddate>200009</enddate><creator>Hendricks, M. B.</creator><creator>DePaolo, D. J.</creator><creator>Cohen, R. C.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200009</creationdate><title>Space and time variation of δ 18 O andδD in precipitation: Can paleotemperature be estimated from ice cores?</title><author>Hendricks, M. B. ; DePaolo, D. J. ; Cohen, R. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c808-4b03bd3f4c4b5c53095b7a661cf8f7d15e5c59260897e08261a70f427dd36b123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hendricks, M. B.</creatorcontrib><creatorcontrib>DePaolo, D. J.</creatorcontrib><creatorcontrib>Cohen, R. C.</creatorcontrib><collection>CrossRef</collection><jtitle>Global biogeochemical cycles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hendricks, M. B.</au><au>DePaolo, D. J.</au><au>Cohen, R. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Space and time variation of δ 18 O andδD in precipitation: Can paleotemperature be estimated from ice cores?</atitle><jtitle>Global biogeochemical cycles</jtitle><date>2000-09</date><risdate>2000</risdate><volume>14</volume><issue>3</issue><spage>851</spage><epage>861</epage><pages>851-861</pages><issn>0886-6236</issn><eissn>1944-9224</eissn><abstract>A one‐dimensional model of meridional water vapor transport is used to evaluate the factors that control the spatial and temporal variations of oxygen (δ 18 O) and hydrogen (δD) isotopic ratios in global precipitation. The model extends Rayleigh descriptions of isotopes in precipitation by including (1) effects of recharge to air masses by evaporation and (2) horizontal transport by both eddy fluxes and advection. Globally, spatial variations in precipitation δ 18 O and δD depend on the ratio of evaporation to the product of horizontal moisture flux and horizontal temperature gradient. At low latitudes, where this ratio is large, precipitation δ 18 O and δD are closely tied to the isotopic ratios of oceanic evaporation. At high latitudes the ratio is small, and δ 18 O and δD are controlled by the ratio of advective transport to eddy transport. Transport by eddy fluxes induces less fractionation than transport by advection, resulting in a smaller gradient of isotopic ratios with temperature. The model‐predicted temporal relationships between δ 18 O (or δD) of Antarctic precipitation and temperature do not necessarily coincide with the modern spatial relationship and depend strongly on the proximity of the precipitation site to the ocean evaporation source. Sensitivity of δ 18 O to temporal changes in local surface temperature is low at coastal sites and increases with distance inland. These results suggest a possible explanation of the apparent discrepancy between borehole temperature inversion estimates of glacial temperatures and temperatures inferred from the modern spatial δ 18 O—surface temperature relationship.</abstract><doi>10.1029/1999GB001198</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0886-6236
ispartof Global biogeochemical cycles, 2000-09, Vol.14 (3), p.851-861
issn 0886-6236
1944-9224
language eng
recordid cdi_crossref_primary_10_1029_1999GB001198
source Wiley; Wiley-Blackwell AGU Digital Archive
title Space and time variation of δ 18 O andδD in precipitation: Can paleotemperature be estimated from ice cores?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Space%20and%20time%20variation%20of%20%CE%B4%2018%20O%20and%CE%B4D%20in%20precipitation:%20Can%20paleotemperature%20be%20estimated%20from%20ice%20cores?&rft.jtitle=Global%20biogeochemical%20cycles&rft.au=Hendricks,%20M.%20B.&rft.date=2000-09&rft.volume=14&rft.issue=3&rft.spage=851&rft.epage=861&rft.pages=851-861&rft.issn=0886-6236&rft.eissn=1944-9224&rft_id=info:doi/10.1029/1999GB001198&rft_dat=%3Ccrossref%3E10_1029_1999GB001198%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c808-4b03bd3f4c4b5c53095b7a661cf8f7d15e5c59260897e08261a70f427dd36b123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true