Loading…
Assimilation of Mars Global Surveyor atmospheric temperature data into a general circulation model
We examined the observed temperature data from Thermal Emission Spectrometer (TES) between heliocentric longitude Ls = 141° and 146° (∼10 Martian days in northern summer) during the mapping phase, then compared them with the simulated results using the NASA/Ames Mars general circulation model. Both...
Saved in:
Published in: | Journal of Geophysical Research: Planets 2001-12, Vol.106 (E12), p.32863-32877 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3829-d2353c15ba0fbaea86e925e4b372fd4a8d8496340b766565f0ec876bac11d6eb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3829-d2353c15ba0fbaea86e925e4b372fd4a8d8496340b766565f0ec876bac11d6eb3 |
container_end_page | 32877 |
container_issue | E12 |
container_start_page | 32863 |
container_title | Journal of Geophysical Research: Planets |
container_volume | 106 |
creator | Zhang, Kate Q. Ingersoll, Andrew P. Kass, David M. Pearl, John C. Smith, Michael D. Conrath, Barney J. Haberle, Robert M. |
description | We examined the observed temperature data from Thermal Emission Spectrometer (TES) between heliocentric longitude Ls = 141° and 146° (∼10 Martian days in northern summer) during the mapping phase, then compared them with the simulated results using the NASA/Ames Mars general circulation model. Both show a strong polar vortex at the winter pole, higher equatorial temperatures near the ground and larger tropospheric lapse rates during daytime than at night. However, the simulation is colder than the observation at the bottom and top of the atmosphere and warmer in the middle. The highest wave activities are found in the polar front in both the simulations and the observations, but it is at a much higher altitude in the former. Experiments show that larger dust opacity improves the temperature field in the lower atmospheric levels. Using a steady state Kalman filter, we attempted to obtain a model state that is consistent with the observations. The assimilation did achieve better agreement with the observations overall, especially over the north pole. However, it is hard to make any further improvement. Dust opacity is the key factor in determining the temperature field; correcting temperature alone improves the spatial and temporal variations, it degrades the mean state in the south pole. Assimilation cannot improve the simulation further, unless more realistic dust opacity and its vertical profile are considered. |
doi_str_mv | 10.1029/2000JE001330 |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2000JE001330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JGRE1309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3829-d2353c15ba0fbaea86e925e4b372fd4a8d8496340b766565f0ec876bac11d6eb3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQRi0EElXpxg_wwkbgbCdOMpaqBEoLUgExWhfHAUPSVHYK9N8TlAqYmE46vfeGj5BjBmcMeHrOAWA2BWBCwB4ZcBbJgHPg-2QALEwC4Dw-JCPvXzsQwkiGwAYkH3tva1tha5sVbUq6QOdpVjU5VvR-497NtnEU27rx6xfjrKatqdfGYbtxhhbYIrWrtqFIn82qe1dUW6c3u17dFKY6IgclVt6MdndIHi-nD5OrYH6XXU_G80CLhKdBwUUkNItyhDJHg4k0KY9MmIuYl0WISZGEqRQh5LGUkYxKMDqJZY6asUKaXAzJad_VrvHemVKtna3RbRUD9T2R-jtRh5_0-Bq9xqp0uNLW_zoi7BZKk47jPfdhK7P9t6lm2XLKBKSdFPSS9a35_JHQvSkZizhST7eZupgtljfJIlNCfAEc5IR5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Assimilation of Mars Global Surveyor atmospheric temperature data into a general circulation model</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Zhang, Kate Q. ; Ingersoll, Andrew P. ; Kass, David M. ; Pearl, John C. ; Smith, Michael D. ; Conrath, Barney J. ; Haberle, Robert M.</creator><creatorcontrib>Zhang, Kate Q. ; Ingersoll, Andrew P. ; Kass, David M. ; Pearl, John C. ; Smith, Michael D. ; Conrath, Barney J. ; Haberle, Robert M.</creatorcontrib><description>We examined the observed temperature data from Thermal Emission Spectrometer (TES) between heliocentric longitude Ls = 141° and 146° (∼10 Martian days in northern summer) during the mapping phase, then compared them with the simulated results using the NASA/Ames Mars general circulation model. Both show a strong polar vortex at the winter pole, higher equatorial temperatures near the ground and larger tropospheric lapse rates during daytime than at night. However, the simulation is colder than the observation at the bottom and top of the atmosphere and warmer in the middle. The highest wave activities are found in the polar front in both the simulations and the observations, but it is at a much higher altitude in the former. Experiments show that larger dust opacity improves the temperature field in the lower atmospheric levels. Using a steady state Kalman filter, we attempted to obtain a model state that is consistent with the observations. The assimilation did achieve better agreement with the observations overall, especially over the north pole. However, it is hard to make any further improvement. Dust opacity is the key factor in determining the temperature field; correcting temperature alone improves the spatial and temporal variations, it degrades the mean state in the south pole. Assimilation cannot improve the simulation further, unless more realistic dust opacity and its vertical profile are considered.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2000JE001330</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology ; Mars ; Neutral atmospheres ; Planetary, asteroid, and satellite characteristics and properties ; Planets, their satellites and rings. Asteroids ; Solar system</subject><ispartof>Journal of Geophysical Research: Planets, 2001-12, Vol.106 (E12), p.32863-32877</ispartof><rights>Copyright 2001 by the American Geophysical Union.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3829-d2353c15ba0fbaea86e925e4b372fd4a8d8496340b766565f0ec876bac11d6eb3</citedby><cites>FETCH-LOGICAL-c3829-d2353c15ba0fbaea86e925e4b372fd4a8d8496340b766565f0ec876bac11d6eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2000JE001330$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2000JE001330$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13464098$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Kate Q.</creatorcontrib><creatorcontrib>Ingersoll, Andrew P.</creatorcontrib><creatorcontrib>Kass, David M.</creatorcontrib><creatorcontrib>Pearl, John C.</creatorcontrib><creatorcontrib>Smith, Michael D.</creatorcontrib><creatorcontrib>Conrath, Barney J.</creatorcontrib><creatorcontrib>Haberle, Robert M.</creatorcontrib><title>Assimilation of Mars Global Surveyor atmospheric temperature data into a general circulation model</title><title>Journal of Geophysical Research: Planets</title><addtitle>J. Geophys. Res</addtitle><description>We examined the observed temperature data from Thermal Emission Spectrometer (TES) between heliocentric longitude Ls = 141° and 146° (∼10 Martian days in northern summer) during the mapping phase, then compared them with the simulated results using the NASA/Ames Mars general circulation model. Both show a strong polar vortex at the winter pole, higher equatorial temperatures near the ground and larger tropospheric lapse rates during daytime than at night. However, the simulation is colder than the observation at the bottom and top of the atmosphere and warmer in the middle. The highest wave activities are found in the polar front in both the simulations and the observations, but it is at a much higher altitude in the former. Experiments show that larger dust opacity improves the temperature field in the lower atmospheric levels. Using a steady state Kalman filter, we attempted to obtain a model state that is consistent with the observations. The assimilation did achieve better agreement with the observations overall, especially over the north pole. However, it is hard to make any further improvement. Dust opacity is the key factor in determining the temperature field; correcting temperature alone improves the spatial and temporal variations, it degrades the mean state in the south pole. Assimilation cannot improve the simulation further, unless more realistic dust opacity and its vertical profile are considered.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Mars</subject><subject>Neutral atmospheres</subject><subject>Planetary, asteroid, and satellite characteristics and properties</subject><subject>Planets, their satellites and rings. Asteroids</subject><subject>Solar system</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQRi0EElXpxg_wwkbgbCdOMpaqBEoLUgExWhfHAUPSVHYK9N8TlAqYmE46vfeGj5BjBmcMeHrOAWA2BWBCwB4ZcBbJgHPg-2QALEwC4Dw-JCPvXzsQwkiGwAYkH3tva1tha5sVbUq6QOdpVjU5VvR-497NtnEU27rx6xfjrKatqdfGYbtxhhbYIrWrtqFIn82qe1dUW6c3u17dFKY6IgclVt6MdndIHi-nD5OrYH6XXU_G80CLhKdBwUUkNItyhDJHg4k0KY9MmIuYl0WISZGEqRQh5LGUkYxKMDqJZY6asUKaXAzJad_VrvHemVKtna3RbRUD9T2R-jtRh5_0-Bq9xqp0uNLW_zoi7BZKk47jPfdhK7P9t6lm2XLKBKSdFPSS9a35_JHQvSkZizhST7eZupgtljfJIlNCfAEc5IR5</recordid><startdate>20011225</startdate><enddate>20011225</enddate><creator>Zhang, Kate Q.</creator><creator>Ingersoll, Andrew P.</creator><creator>Kass, David M.</creator><creator>Pearl, John C.</creator><creator>Smith, Michael D.</creator><creator>Conrath, Barney J.</creator><creator>Haberle, Robert M.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20011225</creationdate><title>Assimilation of Mars Global Surveyor atmospheric temperature data into a general circulation model</title><author>Zhang, Kate Q. ; Ingersoll, Andrew P. ; Kass, David M. ; Pearl, John C. ; Smith, Michael D. ; Conrath, Barney J. ; Haberle, Robert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3829-d2353c15ba0fbaea86e925e4b372fd4a8d8496340b766565f0ec876bac11d6eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Mars</topic><topic>Neutral atmospheres</topic><topic>Planetary, asteroid, and satellite characteristics and properties</topic><topic>Planets, their satellites and rings. Asteroids</topic><topic>Solar system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kate Q.</creatorcontrib><creatorcontrib>Ingersoll, Andrew P.</creatorcontrib><creatorcontrib>Kass, David M.</creatorcontrib><creatorcontrib>Pearl, John C.</creatorcontrib><creatorcontrib>Smith, Michael D.</creatorcontrib><creatorcontrib>Conrath, Barney J.</creatorcontrib><creatorcontrib>Haberle, Robert M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of Geophysical Research: Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kate Q.</au><au>Ingersoll, Andrew P.</au><au>Kass, David M.</au><au>Pearl, John C.</au><au>Smith, Michael D.</au><au>Conrath, Barney J.</au><au>Haberle, Robert M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assimilation of Mars Global Surveyor atmospheric temperature data into a general circulation model</atitle><jtitle>Journal of Geophysical Research: Planets</jtitle><addtitle>J. Geophys. Res</addtitle><date>2001-12-25</date><risdate>2001</risdate><volume>106</volume><issue>E12</issue><spage>32863</spage><epage>32877</epage><pages>32863-32877</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>We examined the observed temperature data from Thermal Emission Spectrometer (TES) between heliocentric longitude Ls = 141° and 146° (∼10 Martian days in northern summer) during the mapping phase, then compared them with the simulated results using the NASA/Ames Mars general circulation model. Both show a strong polar vortex at the winter pole, higher equatorial temperatures near the ground and larger tropospheric lapse rates during daytime than at night. However, the simulation is colder than the observation at the bottom and top of the atmosphere and warmer in the middle. The highest wave activities are found in the polar front in both the simulations and the observations, but it is at a much higher altitude in the former. Experiments show that larger dust opacity improves the temperature field in the lower atmospheric levels. Using a steady state Kalman filter, we attempted to obtain a model state that is consistent with the observations. The assimilation did achieve better agreement with the observations overall, especially over the north pole. However, it is hard to make any further improvement. Dust opacity is the key factor in determining the temperature field; correcting temperature alone improves the spatial and temporal variations, it degrades the mean state in the south pole. Assimilation cannot improve the simulation further, unless more realistic dust opacity and its vertical profile are considered.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2000JE001330</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research: Planets, 2001-12, Vol.106 (E12), p.32863-32877 |
issn | 0148-0227 2156-2202 |
language | eng |
recordid | cdi_crossref_primary_10_1029_2000JE001330 |
source | Wiley-Blackwell AGU Digital Archive |
subjects | Astronomy Earth, ocean, space Exact sciences and technology Mars Neutral atmospheres Planetary, asteroid, and satellite characteristics and properties Planets, their satellites and rings. Asteroids Solar system |
title | Assimilation of Mars Global Surveyor atmospheric temperature data into a general circulation model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assimilation%20of%20Mars%20Global%20Surveyor%20atmospheric%20temperature%20data%20into%20a%20general%20circulation%20model&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Planets&rft.au=Zhang,%20Kate%20Q.&rft.date=2001-12-25&rft.volume=106&rft.issue=E12&rft.spage=32863&rft.epage=32877&rft.pages=32863-32877&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2000JE001330&rft_dat=%3Cwiley_cross%3EJGRE1309%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3829-d2353c15ba0fbaea86e925e4b372fd4a8d8496340b766565f0ec876bac11d6eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |