Loading…

Viscoelastic earthquake cycle models with deep stress-driven creep along the San Andreas fault system

We develop a two‐dimensional boundary element earthquake cycle model including deep interseismic creep on vertical strike‐slip faults in an elastic lithosphere coupled to a viscoelastic asthenosphere. Uniform slip on the upper part of the fault is prescribed periodically to represent great strike‐sl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research: Solid Earth 2004-10, Vol.109 (B10), p.B10403.1-n/a
Main Authors: Johnson, K. M., Segall, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4085-ba91dca6ab08c8fead1a112ecd1084bf0388f7442c324b7f51fbdf15c2e2906f3
cites cdi_FETCH-LOGICAL-a4085-ba91dca6ab08c8fead1a112ecd1084bf0388f7442c324b7f51fbdf15c2e2906f3
container_end_page n/a
container_issue B10
container_start_page B10403.1
container_title Journal of Geophysical Research: Solid Earth
container_volume 109
creator Johnson, K. M.
Segall, P.
description We develop a two‐dimensional boundary element earthquake cycle model including deep interseismic creep on vertical strike‐slip faults in an elastic lithosphere coupled to a viscoelastic asthenosphere. Uniform slip on the upper part of the fault is prescribed periodically to represent great strike‐slip earthquakes. Below the coseismic rupture the fault creeps in response to lithospheric shear stresses within a narrow linear viscous fault zone. The model is applied to the GPS contemporary velocity field across the Carrizo Plain and northern San Francisco Bay segments of the San Andreas fault, as well as triangulation measurements of postseismic strain following the 1906 San Francisco earthquake. Previous analysis of these data, using conventional viscoelastic coupling models without stress‐driven creep [Segall, 2002], shows that it is necessary to invoke different lithosphere‐asthenosphere rheology in northern and southern California in order to explain the data. We show that with deep stress‐driven interseismic creep on the San Andreas fault, the data can be explained with the same rheology for northern and southern California. We estimate elastic thickness in the range 44–100 km (95% confidence level), fault zone viscosity per unit width of 0.5–8.2 × 1017 Pa s/m, and asthenosphere relaxation time of 24–622 years (0.1–2.9 × 1020 Pa s) for northern and southern California. We estimate a slip rate of 21–27 mm/yr and recurrence time of 188–315 years for the northern San Francisco Bay San Andreas fault and slip rate of 32–42 mm/yr with recurrence time of 247–536 years for the Carrizo Plain.
doi_str_mv 10.1029/2004JB003096
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2004JB003096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_FB7QPP0X_Z</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4085-ba91dca6ab08c8fead1a112ecd1084bf0388f7442c324b7f51fbdf15c2e2906f3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpjg_whh2BseO8lhRBoUJQ3oiNNXHGNDRNi51S-vcEFQErZnOl0Tl3cRnbFXAgQGaHEkAN-wAhZPEG60gRxYGUIDdZB4RKA5Ay2WY971-hPRXFCkSH0UPpzYwq9E1pOKFrxm8LnBA3K1MRn84Kqjxfls2YF0Rz7htH3geFK9-p5sZ9_bCa1S-8GRO_xZof1YUj9Nziomq4X_mGpjtsy2LlqfedXXZ_enJ3fBZcXA3Oj48uAlSQRkGOmSgMxphDalJLWAgUQpIpBKQqtxCmqU2UkiaUKk9sJGxeWBEZSTKD2IZdtr_uNW7mvSOr566coltpAfprJf13pRbfW-Nz9AYr67A2pf91YplmSoqWC9fcsqxo9W-nHg5u-kIJFbVWsLbKdoKPHwvdRMdJmET68XKgT_vJ9WgET_o5_ATIAoY2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Viscoelastic earthquake cycle models with deep stress-driven creep along the San Andreas fault system</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Johnson, K. M. ; Segall, P.</creator><creatorcontrib>Johnson, K. M. ; Segall, P.</creatorcontrib><description>We develop a two‐dimensional boundary element earthquake cycle model including deep interseismic creep on vertical strike‐slip faults in an elastic lithosphere coupled to a viscoelastic asthenosphere. Uniform slip on the upper part of the fault is prescribed periodically to represent great strike‐slip earthquakes. Below the coseismic rupture the fault creeps in response to lithospheric shear stresses within a narrow linear viscous fault zone. The model is applied to the GPS contemporary velocity field across the Carrizo Plain and northern San Francisco Bay segments of the San Andreas fault, as well as triangulation measurements of postseismic strain following the 1906 San Francisco earthquake. Previous analysis of these data, using conventional viscoelastic coupling models without stress‐driven creep [Segall, 2002], shows that it is necessary to invoke different lithosphere‐asthenosphere rheology in northern and southern California in order to explain the data. We show that with deep stress‐driven interseismic creep on the San Andreas fault, the data can be explained with the same rheology for northern and southern California. We estimate elastic thickness in the range 44–100 km (95% confidence level), fault zone viscosity per unit width of 0.5–8.2 × 1017 Pa s/m, and asthenosphere relaxation time of 24–622 years (0.1–2.9 × 1020 Pa s) for northern and southern California. We estimate a slip rate of 21–27 mm/yr and recurrence time of 188–315 years for the northern San Francisco Bay San Andreas fault and slip rate of 32–42 mm/yr with recurrence time of 247–536 years for the Carrizo Plain.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2004JB003096</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; GPS ; San Andreas ; slip rates</subject><ispartof>Journal of Geophysical Research: Solid Earth, 2004-10, Vol.109 (B10), p.B10403.1-n/a</ispartof><rights>Copyright 2004 by the American Geophysical Union.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4085-ba91dca6ab08c8fead1a112ecd1084bf0388f7442c324b7f51fbdf15c2e2906f3</citedby><cites>FETCH-LOGICAL-a4085-ba91dca6ab08c8fead1a112ecd1084bf0388f7442c324b7f51fbdf15c2e2906f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2004JB003096$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2004JB003096$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16289421$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, K. M.</creatorcontrib><creatorcontrib>Segall, P.</creatorcontrib><title>Viscoelastic earthquake cycle models with deep stress-driven creep along the San Andreas fault system</title><title>Journal of Geophysical Research: Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>We develop a two‐dimensional boundary element earthquake cycle model including deep interseismic creep on vertical strike‐slip faults in an elastic lithosphere coupled to a viscoelastic asthenosphere. Uniform slip on the upper part of the fault is prescribed periodically to represent great strike‐slip earthquakes. Below the coseismic rupture the fault creeps in response to lithospheric shear stresses within a narrow linear viscous fault zone. The model is applied to the GPS contemporary velocity field across the Carrizo Plain and northern San Francisco Bay segments of the San Andreas fault, as well as triangulation measurements of postseismic strain following the 1906 San Francisco earthquake. Previous analysis of these data, using conventional viscoelastic coupling models without stress‐driven creep [Segall, 2002], shows that it is necessary to invoke different lithosphere‐asthenosphere rheology in northern and southern California in order to explain the data. We show that with deep stress‐driven interseismic creep on the San Andreas fault, the data can be explained with the same rheology for northern and southern California. We estimate elastic thickness in the range 44–100 km (95% confidence level), fault zone viscosity per unit width of 0.5–8.2 × 1017 Pa s/m, and asthenosphere relaxation time of 24–622 years (0.1–2.9 × 1020 Pa s) for northern and southern California. We estimate a slip rate of 21–27 mm/yr and recurrence time of 188–315 years for the northern San Francisco Bay San Andreas fault and slip rate of 32–42 mm/yr with recurrence time of 247–536 years for the Carrizo Plain.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>GPS</subject><subject>San Andreas</subject><subject>slip rates</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElXpjg_whh2BseO8lhRBoUJQ3oiNNXHGNDRNi51S-vcEFQErZnOl0Tl3cRnbFXAgQGaHEkAN-wAhZPEG60gRxYGUIDdZB4RKA5Ay2WY971-hPRXFCkSH0UPpzYwq9E1pOKFrxm8LnBA3K1MRn84Kqjxfls2YF0Rz7htH3geFK9-p5sZ9_bCa1S-8GRO_xZof1YUj9Nziomq4X_mGpjtsy2LlqfedXXZ_enJ3fBZcXA3Oj48uAlSQRkGOmSgMxphDalJLWAgUQpIpBKQqtxCmqU2UkiaUKk9sJGxeWBEZSTKD2IZdtr_uNW7mvSOr566coltpAfprJf13pRbfW-Nz9AYr67A2pf91YplmSoqWC9fcsqxo9W-nHg5u-kIJFbVWsLbKdoKPHwvdRMdJmET68XKgT_vJ9WgET_o5_ATIAoY2</recordid><startdate>200410</startdate><enddate>200410</enddate><creator>Johnson, K. M.</creator><creator>Segall, P.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200410</creationdate><title>Viscoelastic earthquake cycle models with deep stress-driven creep along the San Andreas fault system</title><author>Johnson, K. M. ; Segall, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4085-ba91dca6ab08c8fead1a112ecd1084bf0388f7442c324b7f51fbdf15c2e2906f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>GPS</topic><topic>San Andreas</topic><topic>slip rates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, K. M.</creatorcontrib><creatorcontrib>Segall, P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of Geophysical Research: Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, K. M.</au><au>Segall, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscoelastic earthquake cycle models with deep stress-driven creep along the San Andreas fault system</atitle><jtitle>Journal of Geophysical Research: Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2004-10</date><risdate>2004</risdate><volume>109</volume><issue>B10</issue><spage>B10403.1</spage><epage>n/a</epage><pages>B10403.1-n/a</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>We develop a two‐dimensional boundary element earthquake cycle model including deep interseismic creep on vertical strike‐slip faults in an elastic lithosphere coupled to a viscoelastic asthenosphere. Uniform slip on the upper part of the fault is prescribed periodically to represent great strike‐slip earthquakes. Below the coseismic rupture the fault creeps in response to lithospheric shear stresses within a narrow linear viscous fault zone. The model is applied to the GPS contemporary velocity field across the Carrizo Plain and northern San Francisco Bay segments of the San Andreas fault, as well as triangulation measurements of postseismic strain following the 1906 San Francisco earthquake. Previous analysis of these data, using conventional viscoelastic coupling models without stress‐driven creep [Segall, 2002], shows that it is necessary to invoke different lithosphere‐asthenosphere rheology in northern and southern California in order to explain the data. We show that with deep stress‐driven interseismic creep on the San Andreas fault, the data can be explained with the same rheology for northern and southern California. We estimate elastic thickness in the range 44–100 km (95% confidence level), fault zone viscosity per unit width of 0.5–8.2 × 1017 Pa s/m, and asthenosphere relaxation time of 24–622 years (0.1–2.9 × 1020 Pa s) for northern and southern California. We estimate a slip rate of 21–27 mm/yr and recurrence time of 188–315 years for the northern San Francisco Bay San Andreas fault and slip rate of 32–42 mm/yr with recurrence time of 247–536 years for the Carrizo Plain.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2004JB003096</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Solid Earth, 2004-10, Vol.109 (B10), p.B10403.1-n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_crossref_primary_10_1029_2004JB003096
source Wiley-Blackwell AGU Digital Archive
subjects Earth sciences
Earth, ocean, space
Exact sciences and technology
GPS
San Andreas
slip rates
title Viscoelastic earthquake cycle models with deep stress-driven creep along the San Andreas fault system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscoelastic%20earthquake%20cycle%20models%20with%20deep%20stress-driven%20creep%20along%20the%20San%20Andreas%20fault%20system&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Solid%20Earth&rft.au=Johnson,%20K.%20M.&rft.date=2004-10&rft.volume=109&rft.issue=B10&rft.spage=B10403.1&rft.epage=n/a&rft.pages=B10403.1-n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2004JB003096&rft_dat=%3Cistex_cross%3Eark_67375_WNG_FB7QPP0X_Z%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4085-ba91dca6ab08c8fead1a112ecd1084bf0388f7442c324b7f51fbdf15c2e2906f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true