Loading…

Gas hydrate property measurements in porous sediments with resonant ultrasound spectroscopy

Resonant ultrasound spectroscopy was used to characterize a natural geological core sample obtained from the Mallik 5L‐38 gas hydrate research well at high pressure and subambient temperatures. Using deuterated methane gas to form gas hydrate in the core sample, it was discovered that resonance ampl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research: Solid Earth 2007-05, Vol.112 (B5), p.n/a
Main Authors: McGrail, B. P., Ahmed, S., Schaef, H. T., Owen, A. T., Martin, P. F., Zhu, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3969-1b89bffe30f3d5b2a353ca26e82fa74574c01e8e2c2a9601c959cbbe1188e5d93
cites cdi_FETCH-LOGICAL-a3969-1b89bffe30f3d5b2a353ca26e82fa74574c01e8e2c2a9601c959cbbe1188e5d93
container_end_page n/a
container_issue B5
container_start_page
container_title Journal of Geophysical Research: Solid Earth
container_volume 112
creator McGrail, B. P.
Ahmed, S.
Schaef, H. T.
Owen, A. T.
Martin, P. F.
Zhu, T.
description Resonant ultrasound spectroscopy was used to characterize a natural geological core sample obtained from the Mallik 5L‐38 gas hydrate research well at high pressure and subambient temperatures. Using deuterated methane gas to form gas hydrate in the core sample, it was discovered that resonance amplitudes are correlated with the fraction of the pore space occupied by the gas hydrate crystals. A pore water freezing model was developed that utilizes the known pore size distribution and pore water chemistry to predict gas hydrate saturation as a function of pressure and temperature. The model showed good agreement with the experimental measurements and demonstrated that pore water chemistry is the most important factor controlling equilibrium gas hydrate saturations in these sediments when gas hydrates are formed artificially in laboratory pressure vessels. With further development, the resonant ultrasound technique can provide a rapid, nondestructive, field portable means of measuring the equilibrium P‐T properties and dissociation kinetics of gas hydrates in porous media, determining gas hydrate saturations, and may provide new insights into the nature of gas hydrate formation mechanisms in geologic materials.
doi_str_mv 10.1029/2005JB004084
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2005JB004084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JGRB14739</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3969-1b89bffe30f3d5b2a353ca26e82fa74574c01e8e2c2a9601c959cbbe1188e5d93</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouKg3_4BcvFmdfLXJ0V21KqIgfhw8hDSdYnW3LUmXtf-9u1TUk3MZGH7vzeMRcsjghAE3pxxA3UwBJGi5RSacqTThHPg2mQCTOgHOs11yEOM7rEeqVAKbkNfcRfo2lMH1SLvQdhj6gS7QxWXABTZ9pHVDuza0y0gjlvV4W9X9Gw0Y28Y1PV3O--Biu2xKGjv0fWijb7thn-xUbh7x4HvvkafLi8fZVXJ7n1_Pzm4TJ0xqElZoU1QVCqhEqQruhBLe8RQ1r1wmVSY9MNTIPXcmBeaNMr4okDGtUZVG7JHj0devH8eAle1CvXBhsAzsphv7t5s1fjTinYvezavgGl_HX43WynAFa06M3Kqe4_Cvp73JH6ZMZmITJhlVdezx80flwodNM5Ep-3KX2-fHXOpzSO2d-AIhAINr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gas hydrate property measurements in porous sediments with resonant ultrasound spectroscopy</title><source>Wiley-Blackwell AGU Digital Library</source><creator>McGrail, B. P. ; Ahmed, S. ; Schaef, H. T. ; Owen, A. T. ; Martin, P. F. ; Zhu, T.</creator><creatorcontrib>McGrail, B. P. ; Ahmed, S. ; Schaef, H. T. ; Owen, A. T. ; Martin, P. F. ; Zhu, T.</creatorcontrib><description>Resonant ultrasound spectroscopy was used to characterize a natural geological core sample obtained from the Mallik 5L‐38 gas hydrate research well at high pressure and subambient temperatures. Using deuterated methane gas to form gas hydrate in the core sample, it was discovered that resonance amplitudes are correlated with the fraction of the pore space occupied by the gas hydrate crystals. A pore water freezing model was developed that utilizes the known pore size distribution and pore water chemistry to predict gas hydrate saturation as a function of pressure and temperature. The model showed good agreement with the experimental measurements and demonstrated that pore water chemistry is the most important factor controlling equilibrium gas hydrate saturations in these sediments when gas hydrates are formed artificially in laboratory pressure vessels. With further development, the resonant ultrasound technique can provide a rapid, nondestructive, field portable means of measuring the equilibrium P‐T properties and dissociation kinetics of gas hydrates in porous media, determining gas hydrate saturations, and may provide new insights into the nature of gas hydrate formation mechanisms in geologic materials.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2005JB004084</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>clathrate ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Gas hydrate ; resonant ultrasound spectroscopy</subject><ispartof>Journal of Geophysical Research: Solid Earth, 2007-05, Vol.112 (B5), p.n/a</ispartof><rights>Copyright 2007 by the American Geophysical Union.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3969-1b89bffe30f3d5b2a353ca26e82fa74574c01e8e2c2a9601c959cbbe1188e5d93</citedby><cites>FETCH-LOGICAL-a3969-1b89bffe30f3d5b2a353ca26e82fa74574c01e8e2c2a9601c959cbbe1188e5d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2005JB004084$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2005JB004084$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18859250$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>McGrail, B. P.</creatorcontrib><creatorcontrib>Ahmed, S.</creatorcontrib><creatorcontrib>Schaef, H. T.</creatorcontrib><creatorcontrib>Owen, A. T.</creatorcontrib><creatorcontrib>Martin, P. F.</creatorcontrib><creatorcontrib>Zhu, T.</creatorcontrib><title>Gas hydrate property measurements in porous sediments with resonant ultrasound spectroscopy</title><title>Journal of Geophysical Research: Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>Resonant ultrasound spectroscopy was used to characterize a natural geological core sample obtained from the Mallik 5L‐38 gas hydrate research well at high pressure and subambient temperatures. Using deuterated methane gas to form gas hydrate in the core sample, it was discovered that resonance amplitudes are correlated with the fraction of the pore space occupied by the gas hydrate crystals. A pore water freezing model was developed that utilizes the known pore size distribution and pore water chemistry to predict gas hydrate saturation as a function of pressure and temperature. The model showed good agreement with the experimental measurements and demonstrated that pore water chemistry is the most important factor controlling equilibrium gas hydrate saturations in these sediments when gas hydrates are formed artificially in laboratory pressure vessels. With further development, the resonant ultrasound technique can provide a rapid, nondestructive, field portable means of measuring the equilibrium P‐T properties and dissociation kinetics of gas hydrates in porous media, determining gas hydrate saturations, and may provide new insights into the nature of gas hydrate formation mechanisms in geologic materials.</description><subject>clathrate</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Gas hydrate</subject><subject>resonant ultrasound spectroscopy</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouKg3_4BcvFmdfLXJ0V21KqIgfhw8hDSdYnW3LUmXtf-9u1TUk3MZGH7vzeMRcsjghAE3pxxA3UwBJGi5RSacqTThHPg2mQCTOgHOs11yEOM7rEeqVAKbkNfcRfo2lMH1SLvQdhj6gS7QxWXABTZ9pHVDuza0y0gjlvV4W9X9Gw0Y28Y1PV3O--Biu2xKGjv0fWijb7thn-xUbh7x4HvvkafLi8fZVXJ7n1_Pzm4TJ0xqElZoU1QVCqhEqQruhBLe8RQ1r1wmVSY9MNTIPXcmBeaNMr4okDGtUZVG7JHj0devH8eAle1CvXBhsAzsphv7t5s1fjTinYvezavgGl_HX43WynAFa06M3Kqe4_Cvp73JH6ZMZmITJhlVdezx80flwodNM5Ep-3KX2-fHXOpzSO2d-AIhAINr</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>McGrail, B. P.</creator><creator>Ahmed, S.</creator><creator>Schaef, H. T.</creator><creator>Owen, A. T.</creator><creator>Martin, P. F.</creator><creator>Zhu, T.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200705</creationdate><title>Gas hydrate property measurements in porous sediments with resonant ultrasound spectroscopy</title><author>McGrail, B. P. ; Ahmed, S. ; Schaef, H. T. ; Owen, A. T. ; Martin, P. F. ; Zhu, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3969-1b89bffe30f3d5b2a353ca26e82fa74574c01e8e2c2a9601c959cbbe1188e5d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>clathrate</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Gas hydrate</topic><topic>resonant ultrasound spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGrail, B. P.</creatorcontrib><creatorcontrib>Ahmed, S.</creatorcontrib><creatorcontrib>Schaef, H. T.</creatorcontrib><creatorcontrib>Owen, A. T.</creatorcontrib><creatorcontrib>Martin, P. F.</creatorcontrib><creatorcontrib>Zhu, T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of Geophysical Research: Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGrail, B. P.</au><au>Ahmed, S.</au><au>Schaef, H. T.</au><au>Owen, A. T.</au><au>Martin, P. F.</au><au>Zhu, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas hydrate property measurements in porous sediments with resonant ultrasound spectroscopy</atitle><jtitle>Journal of Geophysical Research: Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2007-05</date><risdate>2007</risdate><volume>112</volume><issue>B5</issue><epage>n/a</epage><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>Resonant ultrasound spectroscopy was used to characterize a natural geological core sample obtained from the Mallik 5L‐38 gas hydrate research well at high pressure and subambient temperatures. Using deuterated methane gas to form gas hydrate in the core sample, it was discovered that resonance amplitudes are correlated with the fraction of the pore space occupied by the gas hydrate crystals. A pore water freezing model was developed that utilizes the known pore size distribution and pore water chemistry to predict gas hydrate saturation as a function of pressure and temperature. The model showed good agreement with the experimental measurements and demonstrated that pore water chemistry is the most important factor controlling equilibrium gas hydrate saturations in these sediments when gas hydrates are formed artificially in laboratory pressure vessels. With further development, the resonant ultrasound technique can provide a rapid, nondestructive, field portable means of measuring the equilibrium P‐T properties and dissociation kinetics of gas hydrates in porous media, determining gas hydrate saturations, and may provide new insights into the nature of gas hydrate formation mechanisms in geologic materials.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2005JB004084</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Solid Earth, 2007-05, Vol.112 (B5), p.n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_crossref_primary_10_1029_2005JB004084
source Wiley-Blackwell AGU Digital Library
subjects clathrate
Earth sciences
Earth, ocean, space
Exact sciences and technology
Gas hydrate
resonant ultrasound spectroscopy
title Gas hydrate property measurements in porous sediments with resonant ultrasound spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20hydrate%20property%20measurements%20in%20porous%20sediments%20with%20resonant%20ultrasound%20spectroscopy&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Solid%20Earth&rft.au=McGrail,%20B.%20P.&rft.date=2007-05&rft.volume=112&rft.issue=B5&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2005JB004084&rft_dat=%3Cwiley_cross%3EJGRB14739%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3969-1b89bffe30f3d5b2a353ca26e82fa74574c01e8e2c2a9601c959cbbe1188e5d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true