Loading…

Paleomagnetic analysis using SQUID microscopy

Superconducting quantum interference device (SQUID) microscopes are a new generation of instruments that map magnetic fields with unprecedented spatial resolution and moment sensitivity. Unlike standard rock magnetometers, SQUID microscopes map magnetic fields rather than measuring magnetic moments...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research: Solid Earth 2007-09, Vol.112 (B9), p.n/a
Main Authors: Weiss, Benjamin P., Lima, Eduardo A., Fong, Luis E., Baudenbacher, Franz J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4363-b93f3e8748063937bdc0a3aaea2b4541de363255e4e1bb77659d043d80d7d30b3
cites cdi_FETCH-LOGICAL-a4363-b93f3e8748063937bdc0a3aaea2b4541de363255e4e1bb77659d043d80d7d30b3
container_end_page n/a
container_issue B9
container_start_page
container_title Journal of Geophysical Research: Solid Earth
container_volume 112
creator Weiss, Benjamin P.
Lima, Eduardo A.
Fong, Luis E.
Baudenbacher, Franz J.
description Superconducting quantum interference device (SQUID) microscopes are a new generation of instruments that map magnetic fields with unprecedented spatial resolution and moment sensitivity. Unlike standard rock magnetometers, SQUID microscopes map magnetic fields rather than measuring magnetic moments such that the sample magnetization pattern must be retrieved from source model fits to the measured field data. Here we present the first direct comparison between paleomagnetic analyses on natural samples using joint measurements from SQUID microscopy and moment magnetometry. We demonstrate that in combination with a priori geologic and petrographic data, SQUID microscopy can accurately characterize the magnetization of lunar glass spherules and Hawaiian basalt. The bulk moment magnitude and direction of these samples inferred from inversions of SQUID microscopy data match direct measurements on the same samples using moment magnetometry. In addition, these inversions provide unique constraints on the magnetization distribution within the sample. These measurements are among the most sensitive and highest resolution quantitative paleomagnetic studies of natural remanent magnetization to date. We expect that this technique will be able to extend many other standard paleomagnetic techniques to previously inaccessible microscale samples.
doi_str_mv 10.1029/2007JB004940
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2007JB004940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_8GM7QL2G_R</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4363-b93f3e8748063937bdc0a3aaea2b4541de363255e4e1bb77659d043d80d7d30b3</originalsourceid><addsrcrecordid>eNp9j0tPwkAUhSdGEwmy8wd0487qnVensxSUCsEHKHE5uW2nZLQU0sFo_70lNerKuzmb7zs3h5BTChcUmL5kAGo6BBBawAHpMSqjkDFgh6QHVMQhMKaOycD7V2hPyEgA7ZHwEUu7WeOqsjuXBVhh2Xjng3fvqlXwNF9OroO1y-qNzzbb5oQcFVh6O_jOPlmOb55Ht-HsIZmMrmYhCh7xMNW84DZWIoaIa67SPAPkiBZZKqSguW0pJqUVlqapUpHUOQiex5CrnEPK--S8690_9rUtzLZ2a6wbQ8Hs15q_a1v8rMO36DMsixqrzPlfR1OlWcxbjnfchytt82-nmSaLIZVM7a2ws5zf2c8fC-s3EymupHm5T0yc3Kn5jCVmwb8A8wtv6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Paleomagnetic analysis using SQUID microscopy</title><source>Wiley-Blackwell AGU Digital Library</source><creator>Weiss, Benjamin P. ; Lima, Eduardo A. ; Fong, Luis E. ; Baudenbacher, Franz J.</creator><creatorcontrib>Weiss, Benjamin P. ; Lima, Eduardo A. ; Fong, Luis E. ; Baudenbacher, Franz J.</creatorcontrib><description>Superconducting quantum interference device (SQUID) microscopes are a new generation of instruments that map magnetic fields with unprecedented spatial resolution and moment sensitivity. Unlike standard rock magnetometers, SQUID microscopes map magnetic fields rather than measuring magnetic moments such that the sample magnetization pattern must be retrieved from source model fits to the measured field data. Here we present the first direct comparison between paleomagnetic analyses on natural samples using joint measurements from SQUID microscopy and moment magnetometry. We demonstrate that in combination with a priori geologic and petrographic data, SQUID microscopy can accurately characterize the magnetization of lunar glass spherules and Hawaiian basalt. The bulk moment magnitude and direction of these samples inferred from inversions of SQUID microscopy data match direct measurements on the same samples using moment magnetometry. In addition, these inversions provide unique constraints on the magnetization distribution within the sample. These measurements are among the most sensitive and highest resolution quantitative paleomagnetic studies of natural remanent magnetization to date. We expect that this technique will be able to extend many other standard paleomagnetic techniques to previously inaccessible microscale samples.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2007JB004940</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; magnetic microscopy ; paleointensity ; Paleomagnetism</subject><ispartof>Journal of Geophysical Research: Solid Earth, 2007-09, Vol.112 (B9), p.n/a</ispartof><rights>Copyright 2007 by the American Geophysical Union.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4363-b93f3e8748063937bdc0a3aaea2b4541de363255e4e1bb77659d043d80d7d30b3</citedby><cites>FETCH-LOGICAL-a4363-b93f3e8748063937bdc0a3aaea2b4541de363255e4e1bb77659d043d80d7d30b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2007JB004940$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2007JB004940$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19179283$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Weiss, Benjamin P.</creatorcontrib><creatorcontrib>Lima, Eduardo A.</creatorcontrib><creatorcontrib>Fong, Luis E.</creatorcontrib><creatorcontrib>Baudenbacher, Franz J.</creatorcontrib><title>Paleomagnetic analysis using SQUID microscopy</title><title>Journal of Geophysical Research: Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>Superconducting quantum interference device (SQUID) microscopes are a new generation of instruments that map magnetic fields with unprecedented spatial resolution and moment sensitivity. Unlike standard rock magnetometers, SQUID microscopes map magnetic fields rather than measuring magnetic moments such that the sample magnetization pattern must be retrieved from source model fits to the measured field data. Here we present the first direct comparison between paleomagnetic analyses on natural samples using joint measurements from SQUID microscopy and moment magnetometry. We demonstrate that in combination with a priori geologic and petrographic data, SQUID microscopy can accurately characterize the magnetization of lunar glass spherules and Hawaiian basalt. The bulk moment magnitude and direction of these samples inferred from inversions of SQUID microscopy data match direct measurements on the same samples using moment magnetometry. In addition, these inversions provide unique constraints on the magnetization distribution within the sample. These measurements are among the most sensitive and highest resolution quantitative paleomagnetic studies of natural remanent magnetization to date. We expect that this technique will be able to extend many other standard paleomagnetic techniques to previously inaccessible microscale samples.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>magnetic microscopy</subject><subject>paleointensity</subject><subject>Paleomagnetism</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9j0tPwkAUhSdGEwmy8wd0487qnVensxSUCsEHKHE5uW2nZLQU0sFo_70lNerKuzmb7zs3h5BTChcUmL5kAGo6BBBawAHpMSqjkDFgh6QHVMQhMKaOycD7V2hPyEgA7ZHwEUu7WeOqsjuXBVhh2Xjng3fvqlXwNF9OroO1y-qNzzbb5oQcFVh6O_jOPlmOb55Ht-HsIZmMrmYhCh7xMNW84DZWIoaIa67SPAPkiBZZKqSguW0pJqUVlqapUpHUOQiex5CrnEPK--S8690_9rUtzLZ2a6wbQ8Hs15q_a1v8rMO36DMsixqrzPlfR1OlWcxbjnfchytt82-nmSaLIZVM7a2ws5zf2c8fC-s3EymupHm5T0yc3Kn5jCVmwb8A8wtv6Q</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Weiss, Benjamin P.</creator><creator>Lima, Eduardo A.</creator><creator>Fong, Luis E.</creator><creator>Baudenbacher, Franz J.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200709</creationdate><title>Paleomagnetic analysis using SQUID microscopy</title><author>Weiss, Benjamin P. ; Lima, Eduardo A. ; Fong, Luis E. ; Baudenbacher, Franz J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4363-b93f3e8748063937bdc0a3aaea2b4541de363255e4e1bb77659d043d80d7d30b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>magnetic microscopy</topic><topic>paleointensity</topic><topic>Paleomagnetism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weiss, Benjamin P.</creatorcontrib><creatorcontrib>Lima, Eduardo A.</creatorcontrib><creatorcontrib>Fong, Luis E.</creatorcontrib><creatorcontrib>Baudenbacher, Franz J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of Geophysical Research: Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weiss, Benjamin P.</au><au>Lima, Eduardo A.</au><au>Fong, Luis E.</au><au>Baudenbacher, Franz J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paleomagnetic analysis using SQUID microscopy</atitle><jtitle>Journal of Geophysical Research: Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2007-09</date><risdate>2007</risdate><volume>112</volume><issue>B9</issue><epage>n/a</epage><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>Superconducting quantum interference device (SQUID) microscopes are a new generation of instruments that map magnetic fields with unprecedented spatial resolution and moment sensitivity. Unlike standard rock magnetometers, SQUID microscopes map magnetic fields rather than measuring magnetic moments such that the sample magnetization pattern must be retrieved from source model fits to the measured field data. Here we present the first direct comparison between paleomagnetic analyses on natural samples using joint measurements from SQUID microscopy and moment magnetometry. We demonstrate that in combination with a priori geologic and petrographic data, SQUID microscopy can accurately characterize the magnetization of lunar glass spherules and Hawaiian basalt. The bulk moment magnitude and direction of these samples inferred from inversions of SQUID microscopy data match direct measurements on the same samples using moment magnetometry. In addition, these inversions provide unique constraints on the magnetization distribution within the sample. These measurements are among the most sensitive and highest resolution quantitative paleomagnetic studies of natural remanent magnetization to date. We expect that this technique will be able to extend many other standard paleomagnetic techniques to previously inaccessible microscale samples.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2007JB004940</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Solid Earth, 2007-09, Vol.112 (B9), p.n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_crossref_primary_10_1029_2007JB004940
source Wiley-Blackwell AGU Digital Library
subjects Earth sciences
Earth, ocean, space
Exact sciences and technology
magnetic microscopy
paleointensity
Paleomagnetism
title Paleomagnetic analysis using SQUID microscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A41%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paleomagnetic%20analysis%20using%20SQUID%20microscopy&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Solid%20Earth&rft.au=Weiss,%20Benjamin%20P.&rft.date=2007-09&rft.volume=112&rft.issue=B9&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2007JB004940&rft_dat=%3Cistex_cross%3Eark_67375_WNG_8GM7QL2G_R%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4363-b93f3e8748063937bdc0a3aaea2b4541de363255e4e1bb77659d043d80d7d30b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true