Loading…

Streamflow generation from snowmelt in semi-arid, seasonally snow-covered, forested catchments, Valles Caldera, New Mexico

Streamflow generation in the semiarid, seasonally snow-covered, and forested mountain catchments of the Valles Caldera, New Mexico, was investigated using chemical tracers. Samples were collected from snow, subsurface flow from hillslopes, and streamflow at Redondo and La Jara Creeks from December 2...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research 2008-12, Vol.44 (12), p.n/a
Main Authors: Liu, Fengjing, Bales, Roger C, Conklin, Martha H, Conrad, Mark E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Streamflow generation in the semiarid, seasonally snow-covered, and forested mountain catchments of the Valles Caldera, New Mexico, was investigated using chemical tracers. Samples were collected from snow, subsurface flow from hillslopes, and streamflow at Redondo and La Jara Creeks from December 2004 to July 2005. A new modeling procedure was developed by combining diagnostic tools of mixing models and end-member mixing analysis to evaluate the assumptions of mixing models. This procedure was successfully used to determine conservative chemical tracers, identify the number of end-members that contribute to streamflow, and evaluate eligibility of end-members. The results show that streamflow at Redondo Creek was generated from two end-members: lateral subsurface flow (~80%) and thermal meteoric water (~20%). Streamflow at La Jara Creek was primarily from lateral subsurface flow alone. Overland flow of snowmelt was not a significant contributor to streamflow in either catchment. Lateral subsurface flow is an important process of streamflow generation in semiarid environments in the southwest United States and should play a critical role in regulating biogeochemical cycles.
ISSN:0043-1397
1944-7973
DOI:10.1029/2007WR006728