Loading…

First-order description of the mechanical fracture behavior of fine-grained surficial marine sediments during gas bubble growth

Bubbles in sediments, imaged via Computed Tomography (CT) scanning, and in surrogate transparent material (gelatin), are well‐described geometrically as eccentric oblate spheroids. While sediments are undoubtedly visco‐elasto‐plastic solids, only part of that complex behavior appears to influence si...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research: Earth Surface 2010-12, Vol.115 (F4), p.n/a
Main Authors: Barry, M. A., Boudreau, B. P., Johnson, B. D., Reed, A. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4497-ac21b6acfec23c9cf9cc07f251b9e2ebb255c2c15131db84279749e5241529643
cites cdi_FETCH-LOGICAL-a4497-ac21b6acfec23c9cf9cc07f251b9e2ebb255c2c15131db84279749e5241529643
container_end_page n/a
container_issue F4
container_start_page
container_title Journal of Geophysical Research: Earth Surface
container_volume 115
creator Barry, M. A.
Boudreau, B. P.
Johnson, B. D.
Reed, A. H.
description Bubbles in sediments, imaged via Computed Tomography (CT) scanning, and in surrogate transparent material (gelatin), are well‐described geometrically as eccentric oblate spheroids. While sediments are undoubtedly visco‐elasto‐plastic solids, only part of that complex behavior appears to influence significantly the formation and shape of gas bubbles. Specifically, the shape of these bubbles can be explained if the mechanical response of fine‐grained sediment is approximated by Linear Elastic Fracture Mechanics (LEFM). To determine the adequacy of the LEFM approximation for gas bubble growth in fine‐grained sediments, a number of gas bubbles were injected and grown in natural sediments, while monitoring the size and shape using an industrial CT scanner. A comparison of measured inverse aspect ratios (IARs) of the injected bubbles with calculated IARs from pressure records provides support for the LEFM theory. Deviations from LEFM are observable in the data, but as bubbles grow larger they trend more closely toward the theory. The use of LEFM has been shown to describe gas bubble growth in shallow coastal sediments to first order.
doi_str_mv 10.1029/2010JF001833
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2010JF001833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_3PH7QPMS_C</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4497-ac21b6acfec23c9cf9cc07f251b9e2ebb255c2c15131db84279749e5241529643</originalsourceid><addsrcrecordid>eNp9kEFPGzEQhS1EpUaUGz_AF24s2GN7N3usIhKI0pZCUY-W7R0nhmQ3sncbOPWv11EqxIm5PGn0vaeZR8gZZ5ecQX0FjLP5lDE-FuKIjICrsgBgcExGjMtxwQCqz-Q0pSeWR6pSMj4if6chpr7oYoORNphcDNs-dC3tPO1XSDfoVqYNzqypj8b1Q0RqcWX-hC7uGR9aLJbRZGloGqIPLmR2Y2Le0IRN2GDbJ9oMebGkS5OoHaxdI13GbtevvpBP3qwTnv7XE_I4vf41uSkWP2a3k6-LwkhZV4VxwG1pnEcHwtXO186xyoPitkZAa0EpB44rLnhjxxKqupI1KpBcQV1KcUIuDrkudilF9HobQ77yVXOm9_3p9_1l_PyAb03Kv-fXWxfSmwfEWDGQLHP8wO3CGl8_zNTz2f00n5U9xcETUo8vbx4Tn3VZiUrp399nWtzdVD_vvj3oifgHGSSO-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First-order description of the mechanical fracture behavior of fine-grained surficial marine sediments during gas bubble growth</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Barry, M. A. ; Boudreau, B. P. ; Johnson, B. D. ; Reed, A. H.</creator><creatorcontrib>Barry, M. A. ; Boudreau, B. P. ; Johnson, B. D. ; Reed, A. H.</creatorcontrib><description>Bubbles in sediments, imaged via Computed Tomography (CT) scanning, and in surrogate transparent material (gelatin), are well‐described geometrically as eccentric oblate spheroids. While sediments are undoubtedly visco‐elasto‐plastic solids, only part of that complex behavior appears to influence significantly the formation and shape of gas bubbles. Specifically, the shape of these bubbles can be explained if the mechanical response of fine‐grained sediment is approximated by Linear Elastic Fracture Mechanics (LEFM). To determine the adequacy of the LEFM approximation for gas bubble growth in fine‐grained sediments, a number of gas bubbles were injected and grown in natural sediments, while monitoring the size and shape using an industrial CT scanner. A comparison of measured inverse aspect ratios (IARs) of the injected bubbles with calculated IARs from pressure records provides support for the LEFM theory. Deviations from LEFM are observable in the data, but as bubbles grow larger they trend more closely toward the theory. The use of LEFM has been shown to describe gas bubble growth in shallow coastal sediments to first order.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2010JF001833</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>bubbles ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; fracture ; LEFM ; sediments</subject><ispartof>Journal of Geophysical Research: Earth Surface, 2010-12, Vol.115 (F4), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4497-ac21b6acfec23c9cf9cc07f251b9e2ebb255c2c15131db84279749e5241529643</citedby><cites>FETCH-LOGICAL-a4497-ac21b6acfec23c9cf9cc07f251b9e2ebb255c2c15131db84279749e5241529643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010JF001833$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010JF001833$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,11495,27905,27906,46449,46873</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23850240$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Barry, M. A.</creatorcontrib><creatorcontrib>Boudreau, B. P.</creatorcontrib><creatorcontrib>Johnson, B. D.</creatorcontrib><creatorcontrib>Reed, A. H.</creatorcontrib><title>First-order description of the mechanical fracture behavior of fine-grained surficial marine sediments during gas bubble growth</title><title>Journal of Geophysical Research: Earth Surface</title><addtitle>J. Geophys. Res</addtitle><description>Bubbles in sediments, imaged via Computed Tomography (CT) scanning, and in surrogate transparent material (gelatin), are well‐described geometrically as eccentric oblate spheroids. While sediments are undoubtedly visco‐elasto‐plastic solids, only part of that complex behavior appears to influence significantly the formation and shape of gas bubbles. Specifically, the shape of these bubbles can be explained if the mechanical response of fine‐grained sediment is approximated by Linear Elastic Fracture Mechanics (LEFM). To determine the adequacy of the LEFM approximation for gas bubble growth in fine‐grained sediments, a number of gas bubbles were injected and grown in natural sediments, while monitoring the size and shape using an industrial CT scanner. A comparison of measured inverse aspect ratios (IARs) of the injected bubbles with calculated IARs from pressure records provides support for the LEFM theory. Deviations from LEFM are observable in the data, but as bubbles grow larger they trend more closely toward the theory. The use of LEFM has been shown to describe gas bubble growth in shallow coastal sediments to first order.</description><subject>bubbles</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>fracture</subject><subject>LEFM</subject><subject>sediments</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPGzEQhS1EpUaUGz_AF24s2GN7N3usIhKI0pZCUY-W7R0nhmQ3sncbOPWv11EqxIm5PGn0vaeZR8gZZ5ecQX0FjLP5lDE-FuKIjICrsgBgcExGjMtxwQCqz-Q0pSeWR6pSMj4if6chpr7oYoORNphcDNs-dC3tPO1XSDfoVqYNzqypj8b1Q0RqcWX-hC7uGR9aLJbRZGloGqIPLmR2Y2Le0IRN2GDbJ9oMebGkS5OoHaxdI13GbtevvpBP3qwTnv7XE_I4vf41uSkWP2a3k6-LwkhZV4VxwG1pnEcHwtXO186xyoPitkZAa0EpB44rLnhjxxKqupI1KpBcQV1KcUIuDrkudilF9HobQ77yVXOm9_3p9_1l_PyAb03Kv-fXWxfSmwfEWDGQLHP8wO3CGl8_zNTz2f00n5U9xcETUo8vbx4Tn3VZiUrp399nWtzdVD_vvj3oifgHGSSO-A</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Barry, M. A.</creator><creator>Boudreau, B. P.</creator><creator>Johnson, B. D.</creator><creator>Reed, A. H.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201012</creationdate><title>First-order description of the mechanical fracture behavior of fine-grained surficial marine sediments during gas bubble growth</title><author>Barry, M. A. ; Boudreau, B. P. ; Johnson, B. D. ; Reed, A. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4497-ac21b6acfec23c9cf9cc07f251b9e2ebb255c2c15131db84279749e5241529643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>bubbles</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>fracture</topic><topic>LEFM</topic><topic>sediments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barry, M. A.</creatorcontrib><creatorcontrib>Boudreau, B. P.</creatorcontrib><creatorcontrib>Johnson, B. D.</creatorcontrib><creatorcontrib>Reed, A. H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of Geophysical Research: Earth Surface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barry, M. A.</au><au>Boudreau, B. P.</au><au>Johnson, B. D.</au><au>Reed, A. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-order description of the mechanical fracture behavior of fine-grained surficial marine sediments during gas bubble growth</atitle><jtitle>Journal of Geophysical Research: Earth Surface</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-12</date><risdate>2010</risdate><volume>115</volume><issue>F4</issue><epage>n/a</epage><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>Bubbles in sediments, imaged via Computed Tomography (CT) scanning, and in surrogate transparent material (gelatin), are well‐described geometrically as eccentric oblate spheroids. While sediments are undoubtedly visco‐elasto‐plastic solids, only part of that complex behavior appears to influence significantly the formation and shape of gas bubbles. Specifically, the shape of these bubbles can be explained if the mechanical response of fine‐grained sediment is approximated by Linear Elastic Fracture Mechanics (LEFM). To determine the adequacy of the LEFM approximation for gas bubble growth in fine‐grained sediments, a number of gas bubbles were injected and grown in natural sediments, while monitoring the size and shape using an industrial CT scanner. A comparison of measured inverse aspect ratios (IARs) of the injected bubbles with calculated IARs from pressure records provides support for the LEFM theory. Deviations from LEFM are observable in the data, but as bubbles grow larger they trend more closely toward the theory. The use of LEFM has been shown to describe gas bubble growth in shallow coastal sediments to first order.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010JF001833</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Earth Surface, 2010-12, Vol.115 (F4), p.n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_crossref_primary_10_1029_2010JF001833
source Wiley-Blackwell AGU Digital Archive
subjects bubbles
Earth sciences
Earth, ocean, space
Exact sciences and technology
fracture
LEFM
sediments
title First-order description of the mechanical fracture behavior of fine-grained surficial marine sediments during gas bubble growth
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-order%20description%20of%20the%20mechanical%20fracture%20behavior%20of%20fine-grained%20surficial%20marine%20sediments%20during%20gas%20bubble%20growth&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Earth%20Surface&rft.au=Barry,%20M.%20A.&rft.date=2010-12&rft.volume=115&rft.issue=F4&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2010JF001833&rft_dat=%3Cistex_cross%3Eark_67375_WNG_3PH7QPMS_C%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4497-ac21b6acfec23c9cf9cc07f251b9e2ebb255c2c15131db84279749e5241529643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true