Loading…

Recent changes in the dynamic properties of declining Arctic sea ice: A model study

Results from a numerical model simulation show significant changes in the dynamic properties of Arctic sea ice during 2007–2011 compared to the 1979–2006 mean. These changes are linked to a 33% reduction in sea ice volume, with decreasing ice concentration, mostly in the marginal seas, and decreasin...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2012-10, Vol.39 (20), p.n/a
Main Authors: Zhang, Jinlun, Lindsay, Ron, Schweiger, Axel, Rigor, Ignatius
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Results from a numerical model simulation show significant changes in the dynamic properties of Arctic sea ice during 2007–2011 compared to the 1979–2006 mean. These changes are linked to a 33% reduction in sea ice volume, with decreasing ice concentration, mostly in the marginal seas, and decreasing ice thickness over the entire Arctic, particularly in the western Arctic. The decline in ice volume results in a 37% decrease in ice mechanical strength and 31% in internal ice interaction force, which in turn leads to an increase in ice speed (13%) and deformation rates (17%). The increasing ice speed has the tendency to drive more ice out of the Arctic. However, ice volume export is reduced because the rate of decrease in ice thickness is greater than the rate of increase in ice speed, thus retarding the decline of Arctic sea ice volume. Ice deformation increases the most in fall and least in summer. Thus the effect of changes in ice deformation on the ice cover is likely strong in fall and weak in summer. The increase in ice deformation boosts ridged ice production in parts of the central Arctic near the Canadian Archipelago and Greenland in winter and early spring, but the average ridged ice production is reduced because less ice is available for ridging in most of the marginal seas in fall. The overall decrease in ridged ice production contributes to the demise of thicker, older ice. As the ice cover becomes thinner and weaker, ice motion approaches a state of free drift in summer and beyond and is therefore more susceptible to changes in wind forcing. This is likely to make seasonal or shorter‐term forecasts of sea ice edge locations more challenging. Key Points Arctic sea ice volume during 2007‐2011 is reduced by 33% Sea ice speed and deformation increase by 13% and 17% Ice volume export is reduced
ISSN:0094-8276
1944-8007
DOI:10.1029/2012GL053545