Loading…

Dissipation at tidal and seismic frequencies in a melt-free Moon

We calculate viscoelastic dissipation in the Moon using a rheological (extended Burgers) model based on laboratory deformation of melt‐free polycrystalline olivine. Lunar temperature structures are calculated assuming steady state conduction with variable internal heat production and core heat flux....

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research: Planets 2012-09, Vol.117 (E9), p.n/a
Main Authors: Nimmo, F., Faul, U. H., Garnero, E. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4509-b07e012f2ac4b51998431e05b4fac2478f1c1c1a42254302ecb933e1e523a5773
cites cdi_FETCH-LOGICAL-c4509-b07e012f2ac4b51998431e05b4fac2478f1c1c1a42254302ecb933e1e523a5773
container_end_page n/a
container_issue E9
container_start_page
container_title Journal of Geophysical Research: Planets
container_volume 117
creator Nimmo, F.
Faul, U. H.
Garnero, E. J.
description We calculate viscoelastic dissipation in the Moon using a rheological (extended Burgers) model based on laboratory deformation of melt‐free polycrystalline olivine. Lunar temperature structures are calculated assuming steady state conduction with variable internal heat production and core heat flux. Successful models can reproduce the dissipation factor (Q) measured at both tidal and seismic frequencies, and the tidal Love numbers h2 and k2, without requiring any mantle melting. However, the frequency‐dependence of our modelQat tidal periods has the opposite sign to that observed. Using the apparently unrelaxed nature of the core‐mantle boundary (CMB), the best fit models require mantle grain sizes of ∼1 cm and CMB temperatures of ≈1700 K. If melt or volatiles are present, the lunar temperature structure must be colder than our melt‐free models. We estimate a present‐day mantle heat production rate of 9–10 nWm−3, suggesting that roughly half of the Moon's radiogenic elements are in the crust. Key Points Dissipation in the Moon is modeled at seismic and tidal frequencies Melting is not required to reproduce the observed dissipation The temperature at the lunar core‐mantle boundary is about 1700 K
doi_str_mv 10.1029/2012JE004160
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2012JE004160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JGRE3079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4509-b07e012f2ac4b51998431e05b4fac2478f1c1c1a42254302ecb933e1e523a5773</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKo3P0Au3lydTJJN96bUWi31D0URvIRsmoXodrcmK9pvb2SleHLmMDD83mPmEXLE4JQBFmcIDGcTAMFy2CEDZDLPEAF3yQCYGGWAqPbJYYyvkErIXAAbkPNLH6Nfm863DTUd7fzS1NQ0SxqdjytvaRXc-4drrHeR-sTQlau7LG0dvW3b5oDsVaaO7vB3DsnT1eRxfJ3N76c344t5ZoWEIitBuXRghcaKUrKiGAnOHMhSVMaiUKOK2dRGIErBAZ0tC84dcxK5kUrxITnpfW1oYwyu0uvgVyZsNAP9E4D-G0DCj3t8baI1dRVM-iBuNZhLUEyIxGHPffrabf711LPpYsJBFUmU9SIfO_e1FZnwpnPFldTPd1O9EHKeC_agX_g38uh1oA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dissipation at tidal and seismic frequencies in a melt-free Moon</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Nimmo, F. ; Faul, U. H. ; Garnero, E. J.</creator><creatorcontrib>Nimmo, F. ; Faul, U. H. ; Garnero, E. J.</creatorcontrib><description>We calculate viscoelastic dissipation in the Moon using a rheological (extended Burgers) model based on laboratory deformation of melt‐free polycrystalline olivine. Lunar temperature structures are calculated assuming steady state conduction with variable internal heat production and core heat flux. Successful models can reproduce the dissipation factor (Q) measured at both tidal and seismic frequencies, and the tidal Love numbers h2 and k2, without requiring any mantle melting. However, the frequency‐dependence of our modelQat tidal periods has the opposite sign to that observed. Using the apparently unrelaxed nature of the core‐mantle boundary (CMB), the best fit models require mantle grain sizes of ∼1 cm and CMB temperatures of ≈1700 K. If melt or volatiles are present, the lunar temperature structure must be colder than our melt‐free models. We estimate a present‐day mantle heat production rate of 9–10 nWm−3, suggesting that roughly half of the Moon's radiogenic elements are in the crust. Key Points Dissipation in the Moon is modeled at seismic and tidal frequencies Melting is not required to reproduce the observed dissipation The temperature at the lunar core‐mantle boundary is about 1700 K</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2012JE004160</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; geophysics</subject><ispartof>Journal of Geophysical Research: Planets, 2012-09, Vol.117 (E9), p.n/a</ispartof><rights>2012. American Geophysical Union. All Rights Reserved.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4509-b07e012f2ac4b51998431e05b4fac2478f1c1c1a42254302ecb933e1e523a5773</citedby><cites>FETCH-LOGICAL-c4509-b07e012f2ac4b51998431e05b4fac2478f1c1c1a42254302ecb933e1e523a5773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2012JE004160$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2012JE004160$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26507144$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nimmo, F.</creatorcontrib><creatorcontrib>Faul, U. H.</creatorcontrib><creatorcontrib>Garnero, E. J.</creatorcontrib><title>Dissipation at tidal and seismic frequencies in a melt-free Moon</title><title>Journal of Geophysical Research: Planets</title><addtitle>J. Geophys. Res</addtitle><description>We calculate viscoelastic dissipation in the Moon using a rheological (extended Burgers) model based on laboratory deformation of melt‐free polycrystalline olivine. Lunar temperature structures are calculated assuming steady state conduction with variable internal heat production and core heat flux. Successful models can reproduce the dissipation factor (Q) measured at both tidal and seismic frequencies, and the tidal Love numbers h2 and k2, without requiring any mantle melting. However, the frequency‐dependence of our modelQat tidal periods has the opposite sign to that observed. Using the apparently unrelaxed nature of the core‐mantle boundary (CMB), the best fit models require mantle grain sizes of ∼1 cm and CMB temperatures of ≈1700 K. If melt or volatiles are present, the lunar temperature structure must be colder than our melt‐free models. We estimate a present‐day mantle heat production rate of 9–10 nWm−3, suggesting that roughly half of the Moon's radiogenic elements are in the crust. Key Points Dissipation in the Moon is modeled at seismic and tidal frequencies Melting is not required to reproduce the observed dissipation The temperature at the lunar core‐mantle boundary is about 1700 K</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>geophysics</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKo3P0Au3lydTJJN96bUWi31D0URvIRsmoXodrcmK9pvb2SleHLmMDD83mPmEXLE4JQBFmcIDGcTAMFy2CEDZDLPEAF3yQCYGGWAqPbJYYyvkErIXAAbkPNLH6Nfm863DTUd7fzS1NQ0SxqdjytvaRXc-4drrHeR-sTQlau7LG0dvW3b5oDsVaaO7vB3DsnT1eRxfJ3N76c344t5ZoWEIitBuXRghcaKUrKiGAnOHMhSVMaiUKOK2dRGIErBAZ0tC84dcxK5kUrxITnpfW1oYwyu0uvgVyZsNAP9E4D-G0DCj3t8baI1dRVM-iBuNZhLUEyIxGHPffrabf711LPpYsJBFUmU9SIfO_e1FZnwpnPFldTPd1O9EHKeC_agX_g38uh1oA</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Nimmo, F.</creator><creator>Faul, U. H.</creator><creator>Garnero, E. J.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201209</creationdate><title>Dissipation at tidal and seismic frequencies in a melt-free Moon</title><author>Nimmo, F. ; Faul, U. H. ; Garnero, E. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4509-b07e012f2ac4b51998431e05b4fac2478f1c1c1a42254302ecb933e1e523a5773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>geophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nimmo, F.</creatorcontrib><creatorcontrib>Faul, U. H.</creatorcontrib><creatorcontrib>Garnero, E. J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of Geophysical Research: Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nimmo, F.</au><au>Faul, U. H.</au><au>Garnero, E. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissipation at tidal and seismic frequencies in a melt-free Moon</atitle><jtitle>Journal of Geophysical Research: Planets</jtitle><addtitle>J. Geophys. Res</addtitle><date>2012-09</date><risdate>2012</risdate><volume>117</volume><issue>E9</issue><epage>n/a</epage><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>We calculate viscoelastic dissipation in the Moon using a rheological (extended Burgers) model based on laboratory deformation of melt‐free polycrystalline olivine. Lunar temperature structures are calculated assuming steady state conduction with variable internal heat production and core heat flux. Successful models can reproduce the dissipation factor (Q) measured at both tidal and seismic frequencies, and the tidal Love numbers h2 and k2, without requiring any mantle melting. However, the frequency‐dependence of our modelQat tidal periods has the opposite sign to that observed. Using the apparently unrelaxed nature of the core‐mantle boundary (CMB), the best fit models require mantle grain sizes of ∼1 cm and CMB temperatures of ≈1700 K. If melt or volatiles are present, the lunar temperature structure must be colder than our melt‐free models. We estimate a present‐day mantle heat production rate of 9–10 nWm−3, suggesting that roughly half of the Moon's radiogenic elements are in the crust. Key Points Dissipation in the Moon is modeled at seismic and tidal frequencies Melting is not required to reproduce the observed dissipation The temperature at the lunar core‐mantle boundary is about 1700 K</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2012JE004160</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Planets, 2012-09, Vol.117 (E9), p.n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_crossref_primary_10_1029_2012JE004160
source Wiley-Blackwell AGU Digital Archive
subjects Earth sciences
Earth, ocean, space
Exact sciences and technology
geophysics
title Dissipation at tidal and seismic frequencies in a melt-free Moon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissipation%20at%20tidal%20and%20seismic%20frequencies%20in%20a%20melt-free%20Moon&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Planets&rft.au=Nimmo,%20F.&rft.date=2012-09&rft.volume=117&rft.issue=E9&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2012JE004160&rft_dat=%3Cwiley_cross%3EJGRE3079%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4509-b07e012f2ac4b51998431e05b4fac2478f1c1c1a42254302ecb933e1e523a5773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true