Loading…

Carbon Fluxes and Primary Magma CO 2 Contents Along the Global Mid‐Ocean Ridge System

The concentration of carbon in primary mid‐ocean ridge basalts (MORBs), and the associated fluxes of CO 2 outgassed at ocean ridges, is examined through new data obtained by secondary ion mass spectrometry (SIMS) on 753 globally distributed MORB glasses. MORB glasses are typically 80–90% degassed of...

Full description

Saved in:
Bibliographic Details
Published in:Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2019-03, Vol.20 (3), p.1387-1424
Main Authors: Le Voyer, Marion, Hauri, Erik H., Cottrell, Elizabeth, Kelley, Katherine A., Salters, Vincent J. M., Langmuir, Charles H., Hilton, David R., Barry, Peter H., Füri, Evelyn
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1180-9279469f520da0a7725ee131e8230c524ed3070f235e8e4d335e0b537cca8cd93
cites cdi_FETCH-LOGICAL-c1180-9279469f520da0a7725ee131e8230c524ed3070f235e8e4d335e0b537cca8cd93
container_end_page 1424
container_issue 3
container_start_page 1387
container_title Geochemistry, geophysics, geosystems : G3
container_volume 20
creator Le Voyer, Marion
Hauri, Erik H.
Cottrell, Elizabeth
Kelley, Katherine A.
Salters, Vincent J. M.
Langmuir, Charles H.
Hilton, David R.
Barry, Peter H.
Füri, Evelyn
description The concentration of carbon in primary mid‐ocean ridge basalts (MORBs), and the associated fluxes of CO 2 outgassed at ocean ridges, is examined through new data obtained by secondary ion mass spectrometry (SIMS) on 753 globally distributed MORB glasses. MORB glasses are typically 80–90% degassed of CO 2 . We thus use the limited range in CO 2 /Ba (81.3 ± 23) and CO 2 /Rb (991 ± 129), derived from undegassed MORB and MORB melt inclusions, to estimate primary CO 2 concentrations for ridges that have Ba and/or Rb data. When combined with quality‐controlled volatile‐element data from the literature ( n  = 2,446), these data constrain a range of primary CO 2 abundances that vary from 104 ppm to 1.90 wt%. Segment‐scale data reveal a range in MORB magma flux varying by a factor of 440 (from 6.8 × 10 5 to 3.0 × 10 8 m 3 /year) and an integrated global MORB magma flux of 16.5 ± 1.6 km 3 /year. When combined with CO 2 /Ba and CO 2 /Rb‐derived primary magma CO 2 abundances, the calculated segment‐scale CO 2 fluxes vary by more than 3 orders of magnitude (3.3 × 10 7 to 4.0 × 10 10 mol/year) and sum to an integrated global MORB CO 2 flux of  × 10 12 mol/year. Variations in ridge CO 2 fluxes have a muted effect on global climate; however, because the vast majority of CO 2 degassed at ridges is dissolved into seawater and enters the marine bicarbonate cycle. MORB degassing would thus only contribute to long‐term variations in climate via degassing directly into the atmosphere in shallow‐water areas or where the ridge system is exposed above sea level. Estimated CO 2 contents of primary mid‐ocean ridge basalts (MORB), calculated on a segment‐by‐segment basis, vary from 104 ppm to 1.9 wt%. CO 2 ‐enriched MORB are present in all ocean basins, in particular, in the Atlantic Ocean basin, which is younger and more likely to contain admixed material from recent subduction compared to the much older Pacific Ocean basin. CO 2 fluxes at individual ridge segments vary by 3 orders of magnitude due primarily to large variability in primary CO 2 content. This study provides the most detailed and accurate estimate to date of the integrated total flux of CO 2 from mid‐ocean ridges of  × 10 12 mol/year. New analyses (753) and compiled data (2,446) for volatiles CO 2 , H 2 O, F, S, and Cl are reported in a global suite of mid‐ocean ridge basalts Estimated primary MORB CO 2 contents vary from 104 ppm to 1.9 wt% and are the result of variations in mantle composition High CO 2 fluxes at rid
doi_str_mv 10.1029/2018GC007630
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1029_2018GC007630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1029_2018GC007630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1180-9279469f520da0a7725ee131e8230c524ed3070f235e8e4d335e0b537cca8cd93</originalsourceid><addsrcrecordid>eNpNkM1KxDAURoMoOI7ufID7AFZvkmbSLofiVGGGij-4LGlyWyttKk0FZ-cj-Iw-icq4mNX5Vh-Hw9g5x0uOIr0SyJM8Q9QLiQdsxpVQkUChD_f2MTsJ4RWRx0olM_acmbEaPKy69w8KYLyDu7HtzbiFjWl6A1kBArLBT-SnAMtu8A1MLwR5N1Smg03rvj-_CkvGw33rGoKHbZioP2VHtekCnf1zzp5W14_ZTbQu8ttsuY4s5wlGqdBpvEhrJdAZNFoLRcQlp0RItErE5CRqrIVUlFDs5C-xUlJbaxLrUjlnF7tfOw4hjFSXbzv9kmP5F6XcjyJ_AN9kUr0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Carbon Fluxes and Primary Magma CO 2 Contents Along the Global Mid‐Ocean Ridge System</title><source>Wiley Online Library Open Access</source><creator>Le Voyer, Marion ; Hauri, Erik H. ; Cottrell, Elizabeth ; Kelley, Katherine A. ; Salters, Vincent J. M. ; Langmuir, Charles H. ; Hilton, David R. ; Barry, Peter H. ; Füri, Evelyn</creator><creatorcontrib>Le Voyer, Marion ; Hauri, Erik H. ; Cottrell, Elizabeth ; Kelley, Katherine A. ; Salters, Vincent J. M. ; Langmuir, Charles H. ; Hilton, David R. ; Barry, Peter H. ; Füri, Evelyn</creatorcontrib><description>The concentration of carbon in primary mid‐ocean ridge basalts (MORBs), and the associated fluxes of CO 2 outgassed at ocean ridges, is examined through new data obtained by secondary ion mass spectrometry (SIMS) on 753 globally distributed MORB glasses. MORB glasses are typically 80–90% degassed of CO 2 . We thus use the limited range in CO 2 /Ba (81.3 ± 23) and CO 2 /Rb (991 ± 129), derived from undegassed MORB and MORB melt inclusions, to estimate primary CO 2 concentrations for ridges that have Ba and/or Rb data. When combined with quality‐controlled volatile‐element data from the literature ( n  = 2,446), these data constrain a range of primary CO 2 abundances that vary from 104 ppm to 1.90 wt%. Segment‐scale data reveal a range in MORB magma flux varying by a factor of 440 (from 6.8 × 10 5 to 3.0 × 10 8 m 3 /year) and an integrated global MORB magma flux of 16.5 ± 1.6 km 3 /year. When combined with CO 2 /Ba and CO 2 /Rb‐derived primary magma CO 2 abundances, the calculated segment‐scale CO 2 fluxes vary by more than 3 orders of magnitude (3.3 × 10 7 to 4.0 × 10 10 mol/year) and sum to an integrated global MORB CO 2 flux of  × 10 12 mol/year. Variations in ridge CO 2 fluxes have a muted effect on global climate; however, because the vast majority of CO 2 degassed at ridges is dissolved into seawater and enters the marine bicarbonate cycle. MORB degassing would thus only contribute to long‐term variations in climate via degassing directly into the atmosphere in shallow‐water areas or where the ridge system is exposed above sea level. Estimated CO 2 contents of primary mid‐ocean ridge basalts (MORB), calculated on a segment‐by‐segment basis, vary from 104 ppm to 1.9 wt%. CO 2 ‐enriched MORB are present in all ocean basins, in particular, in the Atlantic Ocean basin, which is younger and more likely to contain admixed material from recent subduction compared to the much older Pacific Ocean basin. CO 2 fluxes at individual ridge segments vary by 3 orders of magnitude due primarily to large variability in primary CO 2 content. This study provides the most detailed and accurate estimate to date of the integrated total flux of CO 2 from mid‐ocean ridges of  × 10 12 mol/year. New analyses (753) and compiled data (2,446) for volatiles CO 2 , H 2 O, F, S, and Cl are reported in a global suite of mid‐ocean ridge basalts Estimated primary MORB CO 2 contents vary from 104 ppm to 1.9 wt% and are the result of variations in mantle composition High CO 2 fluxes at ridges correlate with high primary CO 2 contents and are due to the presence of subduction components in MORB sources</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1029/2018GC007630</identifier><language>eng</language><ispartof>Geochemistry, geophysics, geosystems : G3, 2019-03, Vol.20 (3), p.1387-1424</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1180-9279469f520da0a7725ee131e8230c524ed3070f235e8e4d335e0b537cca8cd93</citedby><cites>FETCH-LOGICAL-c1180-9279469f520da0a7725ee131e8230c524ed3070f235e8e4d335e0b537cca8cd93</cites><orcidid>0000-0002-6960-1555 ; 0000-0002-7449-4774 ; 0000-0001-9399-8401 ; 0000-0002-5669-7869 ; 0000-0002-7516-2683 ; 0000-0002-7680-2478 ; 0000-0002-9402-9394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Le Voyer, Marion</creatorcontrib><creatorcontrib>Hauri, Erik H.</creatorcontrib><creatorcontrib>Cottrell, Elizabeth</creatorcontrib><creatorcontrib>Kelley, Katherine A.</creatorcontrib><creatorcontrib>Salters, Vincent J. M.</creatorcontrib><creatorcontrib>Langmuir, Charles H.</creatorcontrib><creatorcontrib>Hilton, David R.</creatorcontrib><creatorcontrib>Barry, Peter H.</creatorcontrib><creatorcontrib>Füri, Evelyn</creatorcontrib><title>Carbon Fluxes and Primary Magma CO 2 Contents Along the Global Mid‐Ocean Ridge System</title><title>Geochemistry, geophysics, geosystems : G3</title><description>The concentration of carbon in primary mid‐ocean ridge basalts (MORBs), and the associated fluxes of CO 2 outgassed at ocean ridges, is examined through new data obtained by secondary ion mass spectrometry (SIMS) on 753 globally distributed MORB glasses. MORB glasses are typically 80–90% degassed of CO 2 . We thus use the limited range in CO 2 /Ba (81.3 ± 23) and CO 2 /Rb (991 ± 129), derived from undegassed MORB and MORB melt inclusions, to estimate primary CO 2 concentrations for ridges that have Ba and/or Rb data. When combined with quality‐controlled volatile‐element data from the literature ( n  = 2,446), these data constrain a range of primary CO 2 abundances that vary from 104 ppm to 1.90 wt%. Segment‐scale data reveal a range in MORB magma flux varying by a factor of 440 (from 6.8 × 10 5 to 3.0 × 10 8 m 3 /year) and an integrated global MORB magma flux of 16.5 ± 1.6 km 3 /year. When combined with CO 2 /Ba and CO 2 /Rb‐derived primary magma CO 2 abundances, the calculated segment‐scale CO 2 fluxes vary by more than 3 orders of magnitude (3.3 × 10 7 to 4.0 × 10 10 mol/year) and sum to an integrated global MORB CO 2 flux of  × 10 12 mol/year. Variations in ridge CO 2 fluxes have a muted effect on global climate; however, because the vast majority of CO 2 degassed at ridges is dissolved into seawater and enters the marine bicarbonate cycle. MORB degassing would thus only contribute to long‐term variations in climate via degassing directly into the atmosphere in shallow‐water areas or where the ridge system is exposed above sea level. Estimated CO 2 contents of primary mid‐ocean ridge basalts (MORB), calculated on a segment‐by‐segment basis, vary from 104 ppm to 1.9 wt%. CO 2 ‐enriched MORB are present in all ocean basins, in particular, in the Atlantic Ocean basin, which is younger and more likely to contain admixed material from recent subduction compared to the much older Pacific Ocean basin. CO 2 fluxes at individual ridge segments vary by 3 orders of magnitude due primarily to large variability in primary CO 2 content. This study provides the most detailed and accurate estimate to date of the integrated total flux of CO 2 from mid‐ocean ridges of  × 10 12 mol/year. New analyses (753) and compiled data (2,446) for volatiles CO 2 , H 2 O, F, S, and Cl are reported in a global suite of mid‐ocean ridge basalts Estimated primary MORB CO 2 contents vary from 104 ppm to 1.9 wt% and are the result of variations in mantle composition High CO 2 fluxes at ridges correlate with high primary CO 2 contents and are due to the presence of subduction components in MORB sources</description><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkM1KxDAURoMoOI7ufID7AFZvkmbSLofiVGGGij-4LGlyWyttKk0FZ-cj-Iw-icq4mNX5Vh-Hw9g5x0uOIr0SyJM8Q9QLiQdsxpVQkUChD_f2MTsJ4RWRx0olM_acmbEaPKy69w8KYLyDu7HtzbiFjWl6A1kBArLBT-SnAMtu8A1MLwR5N1Smg03rvj-_CkvGw33rGoKHbZioP2VHtekCnf1zzp5W14_ZTbQu8ttsuY4s5wlGqdBpvEhrJdAZNFoLRcQlp0RItErE5CRqrIVUlFDs5C-xUlJbaxLrUjlnF7tfOw4hjFSXbzv9kmP5F6XcjyJ_AN9kUr0</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Le Voyer, Marion</creator><creator>Hauri, Erik H.</creator><creator>Cottrell, Elizabeth</creator><creator>Kelley, Katherine A.</creator><creator>Salters, Vincent J. M.</creator><creator>Langmuir, Charles H.</creator><creator>Hilton, David R.</creator><creator>Barry, Peter H.</creator><creator>Füri, Evelyn</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6960-1555</orcidid><orcidid>https://orcid.org/0000-0002-7449-4774</orcidid><orcidid>https://orcid.org/0000-0001-9399-8401</orcidid><orcidid>https://orcid.org/0000-0002-5669-7869</orcidid><orcidid>https://orcid.org/0000-0002-7516-2683</orcidid><orcidid>https://orcid.org/0000-0002-7680-2478</orcidid><orcidid>https://orcid.org/0000-0002-9402-9394</orcidid></search><sort><creationdate>201903</creationdate><title>Carbon Fluxes and Primary Magma CO 2 Contents Along the Global Mid‐Ocean Ridge System</title><author>Le Voyer, Marion ; Hauri, Erik H. ; Cottrell, Elizabeth ; Kelley, Katherine A. ; Salters, Vincent J. M. ; Langmuir, Charles H. ; Hilton, David R. ; Barry, Peter H. ; Füri, Evelyn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1180-9279469f520da0a7725ee131e8230c524ed3070f235e8e4d335e0b537cca8cd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Voyer, Marion</creatorcontrib><creatorcontrib>Hauri, Erik H.</creatorcontrib><creatorcontrib>Cottrell, Elizabeth</creatorcontrib><creatorcontrib>Kelley, Katherine A.</creatorcontrib><creatorcontrib>Salters, Vincent J. M.</creatorcontrib><creatorcontrib>Langmuir, Charles H.</creatorcontrib><creatorcontrib>Hilton, David R.</creatorcontrib><creatorcontrib>Barry, Peter H.</creatorcontrib><creatorcontrib>Füri, Evelyn</creatorcontrib><collection>CrossRef</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Voyer, Marion</au><au>Hauri, Erik H.</au><au>Cottrell, Elizabeth</au><au>Kelley, Katherine A.</au><au>Salters, Vincent J. M.</au><au>Langmuir, Charles H.</au><au>Hilton, David R.</au><au>Barry, Peter H.</au><au>Füri, Evelyn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Fluxes and Primary Magma CO 2 Contents Along the Global Mid‐Ocean Ridge System</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><date>2019-03</date><risdate>2019</risdate><volume>20</volume><issue>3</issue><spage>1387</spage><epage>1424</epage><pages>1387-1424</pages><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>The concentration of carbon in primary mid‐ocean ridge basalts (MORBs), and the associated fluxes of CO 2 outgassed at ocean ridges, is examined through new data obtained by secondary ion mass spectrometry (SIMS) on 753 globally distributed MORB glasses. MORB glasses are typically 80–90% degassed of CO 2 . We thus use the limited range in CO 2 /Ba (81.3 ± 23) and CO 2 /Rb (991 ± 129), derived from undegassed MORB and MORB melt inclusions, to estimate primary CO 2 concentrations for ridges that have Ba and/or Rb data. When combined with quality‐controlled volatile‐element data from the literature ( n  = 2,446), these data constrain a range of primary CO 2 abundances that vary from 104 ppm to 1.90 wt%. Segment‐scale data reveal a range in MORB magma flux varying by a factor of 440 (from 6.8 × 10 5 to 3.0 × 10 8 m 3 /year) and an integrated global MORB magma flux of 16.5 ± 1.6 km 3 /year. When combined with CO 2 /Ba and CO 2 /Rb‐derived primary magma CO 2 abundances, the calculated segment‐scale CO 2 fluxes vary by more than 3 orders of magnitude (3.3 × 10 7 to 4.0 × 10 10 mol/year) and sum to an integrated global MORB CO 2 flux of  × 10 12 mol/year. Variations in ridge CO 2 fluxes have a muted effect on global climate; however, because the vast majority of CO 2 degassed at ridges is dissolved into seawater and enters the marine bicarbonate cycle. MORB degassing would thus only contribute to long‐term variations in climate via degassing directly into the atmosphere in shallow‐water areas or where the ridge system is exposed above sea level. Estimated CO 2 contents of primary mid‐ocean ridge basalts (MORB), calculated on a segment‐by‐segment basis, vary from 104 ppm to 1.9 wt%. CO 2 ‐enriched MORB are present in all ocean basins, in particular, in the Atlantic Ocean basin, which is younger and more likely to contain admixed material from recent subduction compared to the much older Pacific Ocean basin. CO 2 fluxes at individual ridge segments vary by 3 orders of magnitude due primarily to large variability in primary CO 2 content. This study provides the most detailed and accurate estimate to date of the integrated total flux of CO 2 from mid‐ocean ridges of  × 10 12 mol/year. New analyses (753) and compiled data (2,446) for volatiles CO 2 , H 2 O, F, S, and Cl are reported in a global suite of mid‐ocean ridge basalts Estimated primary MORB CO 2 contents vary from 104 ppm to 1.9 wt% and are the result of variations in mantle composition High CO 2 fluxes at ridges correlate with high primary CO 2 contents and are due to the presence of subduction components in MORB sources</abstract><doi>10.1029/2018GC007630</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0002-6960-1555</orcidid><orcidid>https://orcid.org/0000-0002-7449-4774</orcidid><orcidid>https://orcid.org/0000-0001-9399-8401</orcidid><orcidid>https://orcid.org/0000-0002-5669-7869</orcidid><orcidid>https://orcid.org/0000-0002-7516-2683</orcidid><orcidid>https://orcid.org/0000-0002-7680-2478</orcidid><orcidid>https://orcid.org/0000-0002-9402-9394</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-2027
ispartof Geochemistry, geophysics, geosystems : G3, 2019-03, Vol.20 (3), p.1387-1424
issn 1525-2027
1525-2027
language eng
recordid cdi_crossref_primary_10_1029_2018GC007630
source Wiley Online Library Open Access
title Carbon Fluxes and Primary Magma CO 2 Contents Along the Global Mid‐Ocean Ridge System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Fluxes%20and%20Primary%20Magma%20CO%202%20Contents%20Along%20the%20Global%20Mid%E2%80%90Ocean%20Ridge%20System&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Le%20Voyer,%20Marion&rft.date=2019-03&rft.volume=20&rft.issue=3&rft.spage=1387&rft.epage=1424&rft.pages=1387-1424&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1029/2018GC007630&rft_dat=%3Ccrossref%3E10_1029_2018GC007630%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1180-9279469f520da0a7725ee131e8230c524ed3070f235e8e4d335e0b537cca8cd93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true