Loading…

Stability of Lotka–Volterra systems

NONLINEAR systems are very often studied in terms of simple mathematical models. The Lotka–Volterra equations provide such a model and have been used to study physical, chemical, ecological and social systems 1 . An important question in the analysis of these equations is the stability of the equili...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 1975-01, Vol.257 (5525), p.388-389
Main Authors: TULJAPURKAR, S. D., SEMURA, J. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c259t-5f50ab19079227732e522557c97aefa1c78ec2fbe64160057535d67608d4ec853
cites cdi_FETCH-LOGICAL-c259t-5f50ab19079227732e522557c97aefa1c78ec2fbe64160057535d67608d4ec853
container_end_page 389
container_issue 5525
container_start_page 388
container_title Nature (London)
container_volume 257
creator TULJAPURKAR, S. D.
SEMURA, J. S.
description NONLINEAR systems are very often studied in terms of simple mathematical models. The Lotka–Volterra equations provide such a model and have been used to study physical, chemical, ecological and social systems 1 . An important question in the analysis of these equations is the stability of the equilibrium values of the interacting variables. Most work with Lotka–Volterra models has considered only neighbourhood stability against small perturbations away from equilibrium. The question of global stability when large perturbations from equilibrium are involved has only been analysed in a few special cases 2 . We establish here that for the general Lotka–Volterra models local stability ensures global stability (asymptotic stability in the large). This result provides justification for the work that has been and is being done 2,3 on linearised versions of the Lotka–Volterra models.
doi_str_mv 10.1038/257388a0
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1038_257388a0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1038_257388a0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-5f50ab19079227732e522557c97aefa1c78ec2fbe64160057535d67608d4ec853</originalsourceid><addsrcrecordid>eNplj81KxDAURoMoWEfBR-hG0EXHm6Q3N13K4B8UXPizLWkmkY6dqSRx0Z3v4Bv6JFZGV7P6NoePcxg75TDnIPWlQJJaG9hjGS9JFaXStM8yAKEL0FIdsqMYVwCAnMqMnT0m03Z9l8Z88Hk9pDfz_fn1MvTJhWDyOMbk1vGYHXjTR3fytzP2fHP9tLgr6ofb-8VVXViBVSrQI5iWV0CVEERSOBQCkWxFxnnDLWlnhW-dKrmaDAglLhUp0MvSWY1yxs63vzYMMQbnm_fQrU0YGw7Nb17znzehF1s0Tsjm1YVmNXyEzWS3y_4Au7VOXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability of Lotka–Volterra systems</title><source>Nature</source><creator>TULJAPURKAR, S. D. ; SEMURA, J. S.</creator><creatorcontrib>TULJAPURKAR, S. D. ; SEMURA, J. S.</creatorcontrib><description>NONLINEAR systems are very often studied in terms of simple mathematical models. The Lotka–Volterra equations provide such a model and have been used to study physical, chemical, ecological and social systems 1 . An important question in the analysis of these equations is the stability of the equilibrium values of the interacting variables. Most work with Lotka–Volterra models has considered only neighbourhood stability against small perturbations away from equilibrium. The question of global stability when large perturbations from equilibrium are involved has only been analysed in a few special cases 2 . We establish here that for the general Lotka–Volterra models local stability ensures global stability (asymptotic stability in the large). This result provides justification for the work that has been and is being done 2,3 on linearised versions of the Lotka–Volterra models.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/257388a0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Humanities and Social Sciences ; letter ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 1975-01, Vol.257 (5525), p.388-389</ispartof><rights>Springer Nature Limited 1975</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-5f50ab19079227732e522557c97aefa1c78ec2fbe64160057535d67608d4ec853</citedby><cites>FETCH-LOGICAL-c259t-5f50ab19079227732e522557c97aefa1c78ec2fbe64160057535d67608d4ec853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>TULJAPURKAR, S. D.</creatorcontrib><creatorcontrib>SEMURA, J. S.</creatorcontrib><title>Stability of Lotka–Volterra systems</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>NONLINEAR systems are very often studied in terms of simple mathematical models. The Lotka–Volterra equations provide such a model and have been used to study physical, chemical, ecological and social systems 1 . An important question in the analysis of these equations is the stability of the equilibrium values of the interacting variables. Most work with Lotka–Volterra models has considered only neighbourhood stability against small perturbations away from equilibrium. The question of global stability when large perturbations from equilibrium are involved has only been analysed in a few special cases 2 . We establish here that for the general Lotka–Volterra models local stability ensures global stability (asymptotic stability in the large). This result provides justification for the work that has been and is being done 2,3 on linearised versions of the Lotka–Volterra models.</description><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><recordid>eNplj81KxDAURoMoWEfBR-hG0EXHm6Q3N13K4B8UXPizLWkmkY6dqSRx0Z3v4Bv6JFZGV7P6NoePcxg75TDnIPWlQJJaG9hjGS9JFaXStM8yAKEL0FIdsqMYVwCAnMqMnT0m03Z9l8Z88Hk9pDfz_fn1MvTJhWDyOMbk1vGYHXjTR3fytzP2fHP9tLgr6ofb-8VVXViBVSrQI5iWV0CVEERSOBQCkWxFxnnDLWlnhW-dKrmaDAglLhUp0MvSWY1yxs63vzYMMQbnm_fQrU0YGw7Nb17znzehF1s0Tsjm1YVmNXyEzWS3y_4Au7VOXQ</recordid><startdate>19750101</startdate><enddate>19750101</enddate><creator>TULJAPURKAR, S. D.</creator><creator>SEMURA, J. S.</creator><general>Nature Publishing Group UK</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19750101</creationdate><title>Stability of Lotka–Volterra systems</title><author>TULJAPURKAR, S. D. ; SEMURA, J. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-5f50ab19079227732e522557c97aefa1c78ec2fbe64160057535d67608d4ec853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TULJAPURKAR, S. D.</creatorcontrib><creatorcontrib>SEMURA, J. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TULJAPURKAR, S. D.</au><au>SEMURA, J. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of Lotka–Volterra systems</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>1975-01-01</date><risdate>1975</risdate><volume>257</volume><issue>5525</issue><spage>388</spage><epage>389</epage><pages>388-389</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>NONLINEAR systems are very often studied in terms of simple mathematical models. The Lotka–Volterra equations provide such a model and have been used to study physical, chemical, ecological and social systems 1 . An important question in the analysis of these equations is the stability of the equilibrium values of the interacting variables. Most work with Lotka–Volterra models has considered only neighbourhood stability against small perturbations away from equilibrium. The question of global stability when large perturbations from equilibrium are involved has only been analysed in a few special cases 2 . We establish here that for the general Lotka–Volterra models local stability ensures global stability (asymptotic stability in the large). This result provides justification for the work that has been and is being done 2,3 on linearised versions of the Lotka–Volterra models.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/257388a0</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 1975-01, Vol.257 (5525), p.388-389
issn 0028-0836
1476-4687
language eng
recordid cdi_crossref_primary_10_1038_257388a0
source Nature
subjects Humanities and Social Sciences
letter
multidisciplinary
Science
Science (multidisciplinary)
title Stability of Lotka–Volterra systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20Lotka%E2%80%93Volterra%20systems&rft.jtitle=Nature%20(London)&rft.au=TULJAPURKAR,%20S.%20D.&rft.date=1975-01-01&rft.volume=257&rft.issue=5525&rft.spage=388&rft.epage=389&rft.pages=388-389&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/257388a0&rft_dat=%3Ccrossref_sprin%3E10_1038_257388a0%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c259t-5f50ab19079227732e522557c97aefa1c78ec2fbe64160057535d67608d4ec853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true