Loading…

Limiting Ischemic Injury by Inhibition of Excitatory Amino Acid Release

Excitatory amino acids (EAAs) are important mediators of ischemic injury in stroke. N-Methyl-d-aspartate (NMDA) receptor antagonists have been shown to be very effective neuroprotective agents in animal models of stroke, but may have unacceptable toxicity for human use. An alternative approach is to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cerebral blood flow and metabolism 1993-01, Vol.13 (1), p.88-97
Main Authors: Graham, Steven H., Chen, Jun, Sharp, Frank R., Simon, Roger P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Excitatory amino acids (EAAs) are important mediators of ischemic injury in stroke. N-Methyl-d-aspartate (NMDA) receptor antagonists have been shown to be very effective neuroprotective agents in animal models of stroke, but may have unacceptable toxicity for human use. An alternative approach is to inhibit the release of EAAs during stroke. BW1003C87 [5-(2,3,5-trichlorophenyl)-2,4-diaminopyrimidine], a drug that inhibits veratrine-induced release of the EAA glutamate in vitro, was tested in a rat model of proximal middle cerebral artery (MCA) occlusion. BW1003C87 significantly decreased ischemia-induced glutamate release in brain when given either 5 min before or 15 min following permanent MCA occlusion. Pretreated and posttreated rats had smaller infarct volumes and preserved glucose metabolism in the ischemic cortex at 24 h after MCA occlusion. BW1003C87 did not induce heat shock protein in the cingulate or retrosplenial cortex, suggesting that it does not injure neurons in these regions as do NMDA antagonists. These results demonstrate that drugs that inhibit glutamate release in ischemia may be nontoxic and show promise for the treatment of stroke.
ISSN:0271-678X
1559-7016
DOI:10.1038/jcbfm.1993.11