Loading…
Stable plastid transformation in PEG-treated protoplasts of Nicotiana tabacum
Plastid engineering currently relies on DNA delivery by the biolistic process. We report here stable plastid transformation in tobacco by an alternate direct transformation protocol that is based on polyethylene glycol (PEG) treatment of leaf protoplasts in the presence of the transforming DNA. Clon...
Saved in:
Published in: | Bio/Technology 1993-01, Vol.11 (1), p.95-97 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Plastid engineering currently relies on DNA delivery by the biolistic process. We report here stable plastid transformation in tobacco by an alternate direct transformation protocol that is based on polyethylene glycol (PEG) treatment of leaf protoplasts in the presence of the transforming DNA. Clones with transformed plastid genomes were selected by spectinomycin resistance encoded by a mutant 16S ribosomal RNA gene. Incorporation of the transforming DNA into the plastid genome was confirmed by two unselected markers, streptomycin resistance and a novel PstI site that flank the spectinomycin resistance mutation in plasmid pZS148. Our simple and inexpensive protocol eliminates the dependence on the particle gun for chloroplast transformation and should facilitate applications of plastome engineering in crops. |
---|---|
ISSN: | 0733-222X 1087-0156 2331-3684 1546-1696 |
DOI: | 10.1038/nbt0193-95 |