Loading…
Production of Functional Human Hemoglobin in Transgenic Swine
A construct containing the locus control region (LCR) from the human β globin locus together with two copies of the human α 1 gene and a single copy of the human β A gene was used to obtain three transgenic pigs. The transgenic pigs are healthy, not anemic, and grow at a rate comparable to non–trans...
Saved in:
Published in: | Bio/Technology 1992-05, Vol.10 (5), p.557-559 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c548t-10049102e7e5087f982137441de8f0af7d2056d7a61ed9f4037125f72eb5b2cc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c548t-10049102e7e5087f982137441de8f0af7d2056d7a61ed9f4037125f72eb5b2cc3 |
container_end_page | 559 |
container_issue | 5 |
container_start_page | 557 |
container_title | Bio/Technology |
container_volume | 10 |
creator | Swanson, Mark E Martin, Michael J O'Donnell, J. Kevin Hoover, Kathy Lago, William Huntress, Victoria Parsons, Cynthia T Pinkert, Carl A Pilder, Stephen Logan, John S |
description | A construct containing the locus control region (LCR) from the human β globin locus together with two copies of the human α
1
gene and a single copy of the human β
A
gene was used to obtain three transgenic pigs. The transgenic pigs are healthy, not anemic, and grow at a rate comparable to non–transgenic littermates. All animals expressed the human genes. However, α globin was consistently expressed at higher levels than β globin. Isolation of the human hemoglobin from both porcine hemoglobin and other non–hemoglobin proteins was accomplished by ion exchange chromatography. The purified porcine derived human hemoglobin exhibited an oxygen affinity similar to that of human derived human hemoglobin. |
doi_str_mv | 10.1038/nbt0592-557 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1038_nbt0592_557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72983664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-10049102e7e5087f982137441de8f0af7d2056d7a61ed9f4037125f72eb5b2cc3</originalsourceid><addsrcrecordid>eNp1kc9LwzAYhoMoc05PnoUK4kWr-dm0Bw8ynBMGCk7wVtI0GR1tMpMW8b83s2V6EQIJvA_Px_cGgFMEbxAk6a0pWsgyHDPG98AYE4JikqR0H4whJyTGGL8fgiPv1xBSnmA6AiMUAEzYGNy9OFt2sq2siayOZp35eYs6mneNMNFcNXZV26IyUThLJ4xfKVPJ6PWzMuoYHGhRe3Uy3BPwNntYTufx4vnxaXq_iCWjaRujMDhDECuuGEy5zlKMCKcUlSrVUGheYsiSkosEqTLTFBKOMNMcq4IVWEoyAZe9d-PsR6d8mzeVl6quhVG28znHWUqShAbwqgels947pfONqxrhvnIE821Z-VBWHsoK9Nmg7YpGlb9s307IL4ZceClqHbaXld9hlAUj2mque8yHxKyUy9e2c6FD_8_U8x43ou2c2un-fCP5BkzAifU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72983664</pqid></control><display><type>article</type><title>Production of Functional Human Hemoglobin in Transgenic Swine</title><source>Nature</source><creator>Swanson, Mark E ; Martin, Michael J ; O'Donnell, J. Kevin ; Hoover, Kathy ; Lago, William ; Huntress, Victoria ; Parsons, Cynthia T ; Pinkert, Carl A ; Pilder, Stephen ; Logan, John S</creator><creatorcontrib>Swanson, Mark E ; Martin, Michael J ; O'Donnell, J. Kevin ; Hoover, Kathy ; Lago, William ; Huntress, Victoria ; Parsons, Cynthia T ; Pinkert, Carl A ; Pilder, Stephen ; Logan, John S</creatorcontrib><description>A construct containing the locus control region (LCR) from the human β globin locus together with two copies of the human α
1
gene and a single copy of the human β
A
gene was used to obtain three transgenic pigs. The transgenic pigs are healthy, not anemic, and grow at a rate comparable to non–transgenic littermates. All animals expressed the human genes. However, α globin was consistently expressed at higher levels than β globin. Isolation of the human hemoglobin from both porcine hemoglobin and other non–hemoglobin proteins was accomplished by ion exchange chromatography. The purified porcine derived human hemoglobin exhibited an oxygen affinity similar to that of human derived human hemoglobin.</description><identifier>ISSN: 0733-222X</identifier><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 2331-3684</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/nbt0592-557</identifier><identifier>PMID: 1368235</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Agriculture ; Animals ; Animals, Genetically Modified ; Bioinformatics ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Chromatography, DEAE-Cellulose ; Chromosome Mapping ; Fundamental and applied biological sciences. Psychology ; Genetic engineering ; Genetic technics ; Globins - biosynthesis ; Hemoglobins - biosynthesis ; Hemoglobins - genetics ; Hemoglobins - isolation & purification ; Humans ; Life Sciences ; Methods. Procedures. Technologies ; Microinjections ; Oxygen - metabolism ; research-paper ; Swine ; Transgenic animals ; Transgenic animals and transgenic plants ; Zygote - physiology</subject><ispartof>Bio/Technology, 1992-05, Vol.10 (5), p.557-559</ispartof><rights>Nature Publishing Company 1992</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-10049102e7e5087f982137441de8f0af7d2056d7a61ed9f4037125f72eb5b2cc3</citedby><cites>FETCH-LOGICAL-c548t-10049102e7e5087f982137441de8f0af7d2056d7a61ed9f4037125f72eb5b2cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4510317$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1368235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Swanson, Mark E</creatorcontrib><creatorcontrib>Martin, Michael J</creatorcontrib><creatorcontrib>O'Donnell, J. Kevin</creatorcontrib><creatorcontrib>Hoover, Kathy</creatorcontrib><creatorcontrib>Lago, William</creatorcontrib><creatorcontrib>Huntress, Victoria</creatorcontrib><creatorcontrib>Parsons, Cynthia T</creatorcontrib><creatorcontrib>Pinkert, Carl A</creatorcontrib><creatorcontrib>Pilder, Stephen</creatorcontrib><creatorcontrib>Logan, John S</creatorcontrib><title>Production of Functional Human Hemoglobin in Transgenic Swine</title><title>Bio/Technology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Biotechnology (N Y)</addtitle><description>A construct containing the locus control region (LCR) from the human β globin locus together with two copies of the human α
1
gene and a single copy of the human β
A
gene was used to obtain three transgenic pigs. The transgenic pigs are healthy, not anemic, and grow at a rate comparable to non–transgenic littermates. All animals expressed the human genes. However, α globin was consistently expressed at higher levels than β globin. Isolation of the human hemoglobin from both porcine hemoglobin and other non–hemoglobin proteins was accomplished by ion exchange chromatography. The purified porcine derived human hemoglobin exhibited an oxygen affinity similar to that of human derived human hemoglobin.</description><subject>Agriculture</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chromatography, DEAE-Cellulose</subject><subject>Chromosome Mapping</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic engineering</subject><subject>Genetic technics</subject><subject>Globins - biosynthesis</subject><subject>Hemoglobins - biosynthesis</subject><subject>Hemoglobins - genetics</subject><subject>Hemoglobins - isolation & purification</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Methods. Procedures. Technologies</subject><subject>Microinjections</subject><subject>Oxygen - metabolism</subject><subject>research-paper</subject><subject>Swine</subject><subject>Transgenic animals</subject><subject>Transgenic animals and transgenic plants</subject><subject>Zygote - physiology</subject><issn>0733-222X</issn><issn>1087-0156</issn><issn>2331-3684</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp1kc9LwzAYhoMoc05PnoUK4kWr-dm0Bw8ynBMGCk7wVtI0GR1tMpMW8b83s2V6EQIJvA_Px_cGgFMEbxAk6a0pWsgyHDPG98AYE4JikqR0H4whJyTGGL8fgiPv1xBSnmA6AiMUAEzYGNy9OFt2sq2siayOZp35eYs6mneNMNFcNXZV26IyUThLJ4xfKVPJ6PWzMuoYHGhRe3Uy3BPwNntYTufx4vnxaXq_iCWjaRujMDhDECuuGEy5zlKMCKcUlSrVUGheYsiSkosEqTLTFBKOMNMcq4IVWEoyAZe9d-PsR6d8mzeVl6quhVG28znHWUqShAbwqgels947pfONqxrhvnIE821Z-VBWHsoK9Nmg7YpGlb9s307IL4ZceClqHbaXld9hlAUj2mque8yHxKyUy9e2c6FD_8_U8x43ou2c2un-fCP5BkzAifU</recordid><startdate>19920501</startdate><enddate>19920501</enddate><creator>Swanson, Mark E</creator><creator>Martin, Michael J</creator><creator>O'Donnell, J. Kevin</creator><creator>Hoover, Kathy</creator><creator>Lago, William</creator><creator>Huntress, Victoria</creator><creator>Parsons, Cynthia T</creator><creator>Pinkert, Carl A</creator><creator>Pilder, Stephen</creator><creator>Logan, John S</creator><general>Nature Publishing Group US</general><general>Nature Publications</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19920501</creationdate><title>Production of Functional Human Hemoglobin in Transgenic Swine</title><author>Swanson, Mark E ; Martin, Michael J ; O'Donnell, J. Kevin ; Hoover, Kathy ; Lago, William ; Huntress, Victoria ; Parsons, Cynthia T ; Pinkert, Carl A ; Pilder, Stephen ; Logan, John S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-10049102e7e5087f982137441de8f0af7d2056d7a61ed9f4037125f72eb5b2cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Agriculture</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chromatography, DEAE-Cellulose</topic><topic>Chromosome Mapping</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic engineering</topic><topic>Genetic technics</topic><topic>Globins - biosynthesis</topic><topic>Hemoglobins - biosynthesis</topic><topic>Hemoglobins - genetics</topic><topic>Hemoglobins - isolation & purification</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Methods. Procedures. Technologies</topic><topic>Microinjections</topic><topic>Oxygen - metabolism</topic><topic>research-paper</topic><topic>Swine</topic><topic>Transgenic animals</topic><topic>Transgenic animals and transgenic plants</topic><topic>Zygote - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swanson, Mark E</creatorcontrib><creatorcontrib>Martin, Michael J</creatorcontrib><creatorcontrib>O'Donnell, J. Kevin</creatorcontrib><creatorcontrib>Hoover, Kathy</creatorcontrib><creatorcontrib>Lago, William</creatorcontrib><creatorcontrib>Huntress, Victoria</creatorcontrib><creatorcontrib>Parsons, Cynthia T</creatorcontrib><creatorcontrib>Pinkert, Carl A</creatorcontrib><creatorcontrib>Pilder, Stephen</creatorcontrib><creatorcontrib>Logan, John S</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bio/Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swanson, Mark E</au><au>Martin, Michael J</au><au>O'Donnell, J. Kevin</au><au>Hoover, Kathy</au><au>Lago, William</au><au>Huntress, Victoria</au><au>Parsons, Cynthia T</au><au>Pinkert, Carl A</au><au>Pilder, Stephen</au><au>Logan, John S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production of Functional Human Hemoglobin in Transgenic Swine</atitle><jtitle>Bio/Technology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Biotechnology (N Y)</addtitle><date>1992-05-01</date><risdate>1992</risdate><volume>10</volume><issue>5</issue><spage>557</spage><epage>559</epage><pages>557-559</pages><issn>0733-222X</issn><issn>1087-0156</issn><eissn>2331-3684</eissn><eissn>1546-1696</eissn><abstract>A construct containing the locus control region (LCR) from the human β globin locus together with two copies of the human α
1
gene and a single copy of the human β
A
gene was used to obtain three transgenic pigs. The transgenic pigs are healthy, not anemic, and grow at a rate comparable to non–transgenic littermates. All animals expressed the human genes. However, α globin was consistently expressed at higher levels than β globin. Isolation of the human hemoglobin from both porcine hemoglobin and other non–hemoglobin proteins was accomplished by ion exchange chromatography. The purified porcine derived human hemoglobin exhibited an oxygen affinity similar to that of human derived human hemoglobin.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>1368235</pmid><doi>10.1038/nbt0592-557</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-222X |
ispartof | Bio/Technology, 1992-05, Vol.10 (5), p.557-559 |
issn | 0733-222X 1087-0156 2331-3684 1546-1696 |
language | eng |
recordid | cdi_crossref_primary_10_1038_nbt0592_557 |
source | Nature |
subjects | Agriculture Animals Animals, Genetically Modified Bioinformatics Biological and medical sciences Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Chromatography, DEAE-Cellulose Chromosome Mapping Fundamental and applied biological sciences. Psychology Genetic engineering Genetic technics Globins - biosynthesis Hemoglobins - biosynthesis Hemoglobins - genetics Hemoglobins - isolation & purification Humans Life Sciences Methods. Procedures. Technologies Microinjections Oxygen - metabolism research-paper Swine Transgenic animals Transgenic animals and transgenic plants Zygote - physiology |
title | Production of Functional Human Hemoglobin in Transgenic Swine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20of%20Functional%20Human%20Hemoglobin%20in%20Transgenic%20Swine&rft.jtitle=Bio/Technology&rft.au=Swanson,%20Mark%20E&rft.date=1992-05-01&rft.volume=10&rft.issue=5&rft.spage=557&rft.epage=559&rft.pages=557-559&rft.issn=0733-222X&rft.eissn=2331-3684&rft_id=info:doi/10.1038/nbt0592-557&rft_dat=%3Cproquest_cross%3E72983664%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c548t-10049102e7e5087f982137441de8f0af7d2056d7a61ed9f4037125f72eb5b2cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72983664&rft_id=info:pmid/1368235&rfr_iscdi=true |