Loading…
Metal complex catalysis in living biological systems
This feature article discusses synthetic metal complexes that are capable of catalyzing chemical transformations in living organisms. Photodynamic therapy exemplifies what is probably the most established artificial catalytic process exploited in medicine, namely the photosensitized catalytic genera...
Saved in:
Published in: | Chemical communications (Cambridge, England) England), 2013-02, Vol.49 (16), p.1581-1587 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c335t-e32493e69218528699a88015e1e94069a6e415e5150d73297075a59f93db49353 |
---|---|
cites | cdi_FETCH-LOGICAL-c335t-e32493e69218528699a88015e1e94069a6e415e5150d73297075a59f93db49353 |
container_end_page | 1587 |
container_issue | 16 |
container_start_page | 1581 |
container_title | Chemical communications (Cambridge, England) |
container_volume | 49 |
creator | Sasmal, Pijus K Streu, Craig N Meggers, Eric |
description | This feature article discusses synthetic metal complexes that are capable of catalyzing chemical transformations in living organisms. Photodynamic therapy exemplifies what is probably the most established artificial catalytic process exploited in medicine, namely the photosensitized catalytic generation of cell-damaging singlet oxygen. Different redox catalysts have been designed over the last two decades to target a variety of redox alterations in cancer and other diseases. For example, pentaazamacrocyclic manganese(
ii
) complexes catalyze the dismutation of superoxide to O
2
and H
2
O
2
in vivo
and thus reduce oxidative stress in analogy to the native enzyme superoxide dismutase. Recently, piano-stool ruthenium and iridium complexes were reported to influence cellular redox homeostasis indirectly by catalytic glutathione oxidation and catalytic transfer hydrogenation using the coenzyme NADH, respectively. Over the last few years, significant progress has been made towards the application of non-biological reactions in living systems, ranging from the organoruthenium-catalyzed cleavage of allylcarbamates and a gold-catalyzed intramolecular hydroarylation to palladium-catalyzed Suzuki-Miyaura and Sonogashira cross-couplings within the cytoplasm or on the surface of living cells. The design of bioorthogonal catalyst/substrate pairs, which can passively diffuse into cells, combines the advantages of small molecules with catalysis and promises to provide exciting new tools for future chemical biology studies.
This feature article reviews and discusses recent progress with the design of synthetic metal complexes as catalysts for applications in living biological systems. |
doi_str_mv | 10.1039/c2cc37832a |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C2CC37832A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1282837213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-e32493e69218528699a88015e1e94069a6e415e5150d73297075a59f93db49353</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgipvTi3el3kSoJnlJkxxH8RdMvCh4K1majki61qYV99-buTlv5pI83iePxxehU4KvCQZ1Y6gxICRQvYfGBDKWcibf9tdvrlIBjI_QUQjvOB7C5SEaUaAcY6HGiD3ZXvvENHXr7VdidKxWwYXELRPvPt1ykcxd45uFM5GFVehtHY7RQaV9sCfbe4Je725f8od09nz_mE9nqQHgfWqBMgU2U5RITmWmlJYybmCJVQxnSmeWxYoTjksBVAksuOaqUlDO40cOE3S5mdt2zcdgQ1_ULhjrvV7aZggFoZJKEJRApFcbaromhM5WRdu5WnerguBinVKR0zz_SWka8fl27jCvbbmjv7FEcLEBXTC77l_MRVtW0Zz9Z-AbINB0qQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1282837213</pqid></control><display><type>article</type><title>Metal complex catalysis in living biological systems</title><source>Royal Society of Chemistry</source><creator>Sasmal, Pijus K ; Streu, Craig N ; Meggers, Eric</creator><creatorcontrib>Sasmal, Pijus K ; Streu, Craig N ; Meggers, Eric</creatorcontrib><description>This feature article discusses synthetic metal complexes that are capable of catalyzing chemical transformations in living organisms. Photodynamic therapy exemplifies what is probably the most established artificial catalytic process exploited in medicine, namely the photosensitized catalytic generation of cell-damaging singlet oxygen. Different redox catalysts have been designed over the last two decades to target a variety of redox alterations in cancer and other diseases. For example, pentaazamacrocyclic manganese(
ii
) complexes catalyze the dismutation of superoxide to O
2
and H
2
O
2
in vivo
and thus reduce oxidative stress in analogy to the native enzyme superoxide dismutase. Recently, piano-stool ruthenium and iridium complexes were reported to influence cellular redox homeostasis indirectly by catalytic glutathione oxidation and catalytic transfer hydrogenation using the coenzyme NADH, respectively. Over the last few years, significant progress has been made towards the application of non-biological reactions in living systems, ranging from the organoruthenium-catalyzed cleavage of allylcarbamates and a gold-catalyzed intramolecular hydroarylation to palladium-catalyzed Suzuki-Miyaura and Sonogashira cross-couplings within the cytoplasm or on the surface of living cells. The design of bioorthogonal catalyst/substrate pairs, which can passively diffuse into cells, combines the advantages of small molecules with catalysis and promises to provide exciting new tools for future chemical biology studies.
This feature article reviews and discusses recent progress with the design of synthetic metal complexes as catalysts for applications in living biological systems.</description><identifier>ISSN: 1359-7345</identifier><identifier>EISSN: 1364-548X</identifier><identifier>DOI: 10.1039/c2cc37832a</identifier><identifier>PMID: 23250079</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Catalysis ; Cell Survival ; Cells - chemistry ; Cells - cytology ; Cells - metabolism ; Glutathione - chemistry ; Glutathione - metabolism ; Humans ; Hydrogen Peroxide - chemistry ; Hydrogen Peroxide - metabolism ; Metals - chemistry ; NAD - chemistry ; NAD - metabolism ; Organometallic Compounds - chemistry ; Organometallic Compounds - metabolism ; Singlet Oxygen - chemistry ; Singlet Oxygen - metabolism ; Superoxide Dismutase - chemistry ; Superoxide Dismutase - metabolism ; Superoxides - chemistry ; Superoxides - metabolism</subject><ispartof>Chemical communications (Cambridge, England), 2013-02, Vol.49 (16), p.1581-1587</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-e32493e69218528699a88015e1e94069a6e415e5150d73297075a59f93db49353</citedby><cites>FETCH-LOGICAL-c335t-e32493e69218528699a88015e1e94069a6e415e5150d73297075a59f93db49353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23250079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sasmal, Pijus K</creatorcontrib><creatorcontrib>Streu, Craig N</creatorcontrib><creatorcontrib>Meggers, Eric</creatorcontrib><title>Metal complex catalysis in living biological systems</title><title>Chemical communications (Cambridge, England)</title><addtitle>Chem Commun (Camb)</addtitle><description>This feature article discusses synthetic metal complexes that are capable of catalyzing chemical transformations in living organisms. Photodynamic therapy exemplifies what is probably the most established artificial catalytic process exploited in medicine, namely the photosensitized catalytic generation of cell-damaging singlet oxygen. Different redox catalysts have been designed over the last two decades to target a variety of redox alterations in cancer and other diseases. For example, pentaazamacrocyclic manganese(
ii
) complexes catalyze the dismutation of superoxide to O
2
and H
2
O
2
in vivo
and thus reduce oxidative stress in analogy to the native enzyme superoxide dismutase. Recently, piano-stool ruthenium and iridium complexes were reported to influence cellular redox homeostasis indirectly by catalytic glutathione oxidation and catalytic transfer hydrogenation using the coenzyme NADH, respectively. Over the last few years, significant progress has been made towards the application of non-biological reactions in living systems, ranging from the organoruthenium-catalyzed cleavage of allylcarbamates and a gold-catalyzed intramolecular hydroarylation to palladium-catalyzed Suzuki-Miyaura and Sonogashira cross-couplings within the cytoplasm or on the surface of living cells. The design of bioorthogonal catalyst/substrate pairs, which can passively diffuse into cells, combines the advantages of small molecules with catalysis and promises to provide exciting new tools for future chemical biology studies.
This feature article reviews and discusses recent progress with the design of synthetic metal complexes as catalysts for applications in living biological systems.</description><subject>Animals</subject><subject>Catalysis</subject><subject>Cell Survival</subject><subject>Cells - chemistry</subject><subject>Cells - cytology</subject><subject>Cells - metabolism</subject><subject>Glutathione - chemistry</subject><subject>Glutathione - metabolism</subject><subject>Humans</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Metals - chemistry</subject><subject>NAD - chemistry</subject><subject>NAD - metabolism</subject><subject>Organometallic Compounds - chemistry</subject><subject>Organometallic Compounds - metabolism</subject><subject>Singlet Oxygen - chemistry</subject><subject>Singlet Oxygen - metabolism</subject><subject>Superoxide Dismutase - chemistry</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Superoxides - chemistry</subject><subject>Superoxides - metabolism</subject><issn>1359-7345</issn><issn>1364-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUB_AgipvTi3el3kSoJnlJkxxH8RdMvCh4K1majki61qYV99-buTlv5pI83iePxxehU4KvCQZ1Y6gxICRQvYfGBDKWcibf9tdvrlIBjI_QUQjvOB7C5SEaUaAcY6HGiD3ZXvvENHXr7VdidKxWwYXELRPvPt1ykcxd45uFM5GFVehtHY7RQaV9sCfbe4Je725f8od09nz_mE9nqQHgfWqBMgU2U5RITmWmlJYybmCJVQxnSmeWxYoTjksBVAksuOaqUlDO40cOE3S5mdt2zcdgQ1_ULhjrvV7aZggFoZJKEJRApFcbaromhM5WRdu5WnerguBinVKR0zz_SWka8fl27jCvbbmjv7FEcLEBXTC77l_MRVtW0Zz9Z-AbINB0qQ</recordid><startdate>20130225</startdate><enddate>20130225</enddate><creator>Sasmal, Pijus K</creator><creator>Streu, Craig N</creator><creator>Meggers, Eric</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130225</creationdate><title>Metal complex catalysis in living biological systems</title><author>Sasmal, Pijus K ; Streu, Craig N ; Meggers, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-e32493e69218528699a88015e1e94069a6e415e5150d73297075a59f93db49353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Catalysis</topic><topic>Cell Survival</topic><topic>Cells - chemistry</topic><topic>Cells - cytology</topic><topic>Cells - metabolism</topic><topic>Glutathione - chemistry</topic><topic>Glutathione - metabolism</topic><topic>Humans</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Metals - chemistry</topic><topic>NAD - chemistry</topic><topic>NAD - metabolism</topic><topic>Organometallic Compounds - chemistry</topic><topic>Organometallic Compounds - metabolism</topic><topic>Singlet Oxygen - chemistry</topic><topic>Singlet Oxygen - metabolism</topic><topic>Superoxide Dismutase - chemistry</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Superoxides - chemistry</topic><topic>Superoxides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sasmal, Pijus K</creatorcontrib><creatorcontrib>Streu, Craig N</creatorcontrib><creatorcontrib>Meggers, Eric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical communications (Cambridge, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sasmal, Pijus K</au><au>Streu, Craig N</au><au>Meggers, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal complex catalysis in living biological systems</atitle><jtitle>Chemical communications (Cambridge, England)</jtitle><addtitle>Chem Commun (Camb)</addtitle><date>2013-02-25</date><risdate>2013</risdate><volume>49</volume><issue>16</issue><spage>1581</spage><epage>1587</epage><pages>1581-1587</pages><issn>1359-7345</issn><eissn>1364-548X</eissn><abstract>This feature article discusses synthetic metal complexes that are capable of catalyzing chemical transformations in living organisms. Photodynamic therapy exemplifies what is probably the most established artificial catalytic process exploited in medicine, namely the photosensitized catalytic generation of cell-damaging singlet oxygen. Different redox catalysts have been designed over the last two decades to target a variety of redox alterations in cancer and other diseases. For example, pentaazamacrocyclic manganese(
ii
) complexes catalyze the dismutation of superoxide to O
2
and H
2
O
2
in vivo
and thus reduce oxidative stress in analogy to the native enzyme superoxide dismutase. Recently, piano-stool ruthenium and iridium complexes were reported to influence cellular redox homeostasis indirectly by catalytic glutathione oxidation and catalytic transfer hydrogenation using the coenzyme NADH, respectively. Over the last few years, significant progress has been made towards the application of non-biological reactions in living systems, ranging from the organoruthenium-catalyzed cleavage of allylcarbamates and a gold-catalyzed intramolecular hydroarylation to palladium-catalyzed Suzuki-Miyaura and Sonogashira cross-couplings within the cytoplasm or on the surface of living cells. The design of bioorthogonal catalyst/substrate pairs, which can passively diffuse into cells, combines the advantages of small molecules with catalysis and promises to provide exciting new tools for future chemical biology studies.
This feature article reviews and discusses recent progress with the design of synthetic metal complexes as catalysts for applications in living biological systems.</abstract><cop>England</cop><pmid>23250079</pmid><doi>10.1039/c2cc37832a</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-7345 |
ispartof | Chemical communications (Cambridge, England), 2013-02, Vol.49 (16), p.1581-1587 |
issn | 1359-7345 1364-548X |
language | eng |
recordid | cdi_crossref_primary_10_1039_C2CC37832A |
source | Royal Society of Chemistry |
subjects | Animals Catalysis Cell Survival Cells - chemistry Cells - cytology Cells - metabolism Glutathione - chemistry Glutathione - metabolism Humans Hydrogen Peroxide - chemistry Hydrogen Peroxide - metabolism Metals - chemistry NAD - chemistry NAD - metabolism Organometallic Compounds - chemistry Organometallic Compounds - metabolism Singlet Oxygen - chemistry Singlet Oxygen - metabolism Superoxide Dismutase - chemistry Superoxide Dismutase - metabolism Superoxides - chemistry Superoxides - metabolism |
title | Metal complex catalysis in living biological systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A37%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%20complex%20catalysis%20in%20living%20biological%20systems&rft.jtitle=Chemical%20communications%20(Cambridge,%20England)&rft.au=Sasmal,%20Pijus%20K&rft.date=2013-02-25&rft.volume=49&rft.issue=16&rft.spage=1581&rft.epage=1587&rft.pages=1581-1587&rft.issn=1359-7345&rft.eissn=1364-548X&rft_id=info:doi/10.1039/c2cc37832a&rft_dat=%3Cproquest_cross%3E1282837213%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-e32493e69218528699a88015e1e94069a6e415e5150d73297075a59f93db49353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1282837213&rft_id=info:pmid/23250079&rfr_iscdi=true |