Loading…

Metal complex catalysis in living biological systems

This feature article discusses synthetic metal complexes that are capable of catalyzing chemical transformations in living organisms. Photodynamic therapy exemplifies what is probably the most established artificial catalytic process exploited in medicine, namely the photosensitized catalytic genera...

Full description

Saved in:
Bibliographic Details
Published in:Chemical communications (Cambridge, England) England), 2013-02, Vol.49 (16), p.1581-1587
Main Authors: Sasmal, Pijus K, Streu, Craig N, Meggers, Eric
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c335t-e32493e69218528699a88015e1e94069a6e415e5150d73297075a59f93db49353
cites cdi_FETCH-LOGICAL-c335t-e32493e69218528699a88015e1e94069a6e415e5150d73297075a59f93db49353
container_end_page 1587
container_issue 16
container_start_page 1581
container_title Chemical communications (Cambridge, England)
container_volume 49
creator Sasmal, Pijus K
Streu, Craig N
Meggers, Eric
description This feature article discusses synthetic metal complexes that are capable of catalyzing chemical transformations in living organisms. Photodynamic therapy exemplifies what is probably the most established artificial catalytic process exploited in medicine, namely the photosensitized catalytic generation of cell-damaging singlet oxygen. Different redox catalysts have been designed over the last two decades to target a variety of redox alterations in cancer and other diseases. For example, pentaazamacrocyclic manganese( ii ) complexes catalyze the dismutation of superoxide to O 2 and H 2 O 2 in vivo and thus reduce oxidative stress in analogy to the native enzyme superoxide dismutase. Recently, piano-stool ruthenium and iridium complexes were reported to influence cellular redox homeostasis indirectly by catalytic glutathione oxidation and catalytic transfer hydrogenation using the coenzyme NADH, respectively. Over the last few years, significant progress has been made towards the application of non-biological reactions in living systems, ranging from the organoruthenium-catalyzed cleavage of allylcarbamates and a gold-catalyzed intramolecular hydroarylation to palladium-catalyzed Suzuki-Miyaura and Sonogashira cross-couplings within the cytoplasm or on the surface of living cells. The design of bioorthogonal catalyst/substrate pairs, which can passively diffuse into cells, combines the advantages of small molecules with catalysis and promises to provide exciting new tools for future chemical biology studies. This feature article reviews and discusses recent progress with the design of synthetic metal complexes as catalysts for applications in living biological systems.
doi_str_mv 10.1039/c2cc37832a
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C2CC37832A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1282837213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-e32493e69218528699a88015e1e94069a6e415e5150d73297075a59f93db49353</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgipvTi3el3kSoJnlJkxxH8RdMvCh4K1majki61qYV99-buTlv5pI83iePxxehU4KvCQZ1Y6gxICRQvYfGBDKWcibf9tdvrlIBjI_QUQjvOB7C5SEaUaAcY6HGiD3ZXvvENHXr7VdidKxWwYXELRPvPt1ykcxd45uFM5GFVehtHY7RQaV9sCfbe4Je725f8od09nz_mE9nqQHgfWqBMgU2U5RITmWmlJYybmCJVQxnSmeWxYoTjksBVAksuOaqUlDO40cOE3S5mdt2zcdgQ1_ULhjrvV7aZggFoZJKEJRApFcbaromhM5WRdu5WnerguBinVKR0zz_SWka8fl27jCvbbmjv7FEcLEBXTC77l_MRVtW0Zz9Z-AbINB0qQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1282837213</pqid></control><display><type>article</type><title>Metal complex catalysis in living biological systems</title><source>Royal Society of Chemistry</source><creator>Sasmal, Pijus K ; Streu, Craig N ; Meggers, Eric</creator><creatorcontrib>Sasmal, Pijus K ; Streu, Craig N ; Meggers, Eric</creatorcontrib><description>This feature article discusses synthetic metal complexes that are capable of catalyzing chemical transformations in living organisms. Photodynamic therapy exemplifies what is probably the most established artificial catalytic process exploited in medicine, namely the photosensitized catalytic generation of cell-damaging singlet oxygen. Different redox catalysts have been designed over the last two decades to target a variety of redox alterations in cancer and other diseases. For example, pentaazamacrocyclic manganese( ii ) complexes catalyze the dismutation of superoxide to O 2 and H 2 O 2 in vivo and thus reduce oxidative stress in analogy to the native enzyme superoxide dismutase. Recently, piano-stool ruthenium and iridium complexes were reported to influence cellular redox homeostasis indirectly by catalytic glutathione oxidation and catalytic transfer hydrogenation using the coenzyme NADH, respectively. Over the last few years, significant progress has been made towards the application of non-biological reactions in living systems, ranging from the organoruthenium-catalyzed cleavage of allylcarbamates and a gold-catalyzed intramolecular hydroarylation to palladium-catalyzed Suzuki-Miyaura and Sonogashira cross-couplings within the cytoplasm or on the surface of living cells. The design of bioorthogonal catalyst/substrate pairs, which can passively diffuse into cells, combines the advantages of small molecules with catalysis and promises to provide exciting new tools for future chemical biology studies. This feature article reviews and discusses recent progress with the design of synthetic metal complexes as catalysts for applications in living biological systems.</description><identifier>ISSN: 1359-7345</identifier><identifier>EISSN: 1364-548X</identifier><identifier>DOI: 10.1039/c2cc37832a</identifier><identifier>PMID: 23250079</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Catalysis ; Cell Survival ; Cells - chemistry ; Cells - cytology ; Cells - metabolism ; Glutathione - chemistry ; Glutathione - metabolism ; Humans ; Hydrogen Peroxide - chemistry ; Hydrogen Peroxide - metabolism ; Metals - chemistry ; NAD - chemistry ; NAD - metabolism ; Organometallic Compounds - chemistry ; Organometallic Compounds - metabolism ; Singlet Oxygen - chemistry ; Singlet Oxygen - metabolism ; Superoxide Dismutase - chemistry ; Superoxide Dismutase - metabolism ; Superoxides - chemistry ; Superoxides - metabolism</subject><ispartof>Chemical communications (Cambridge, England), 2013-02, Vol.49 (16), p.1581-1587</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-e32493e69218528699a88015e1e94069a6e415e5150d73297075a59f93db49353</citedby><cites>FETCH-LOGICAL-c335t-e32493e69218528699a88015e1e94069a6e415e5150d73297075a59f93db49353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23250079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sasmal, Pijus K</creatorcontrib><creatorcontrib>Streu, Craig N</creatorcontrib><creatorcontrib>Meggers, Eric</creatorcontrib><title>Metal complex catalysis in living biological systems</title><title>Chemical communications (Cambridge, England)</title><addtitle>Chem Commun (Camb)</addtitle><description>This feature article discusses synthetic metal complexes that are capable of catalyzing chemical transformations in living organisms. Photodynamic therapy exemplifies what is probably the most established artificial catalytic process exploited in medicine, namely the photosensitized catalytic generation of cell-damaging singlet oxygen. Different redox catalysts have been designed over the last two decades to target a variety of redox alterations in cancer and other diseases. For example, pentaazamacrocyclic manganese( ii ) complexes catalyze the dismutation of superoxide to O 2 and H 2 O 2 in vivo and thus reduce oxidative stress in analogy to the native enzyme superoxide dismutase. Recently, piano-stool ruthenium and iridium complexes were reported to influence cellular redox homeostasis indirectly by catalytic glutathione oxidation and catalytic transfer hydrogenation using the coenzyme NADH, respectively. Over the last few years, significant progress has been made towards the application of non-biological reactions in living systems, ranging from the organoruthenium-catalyzed cleavage of allylcarbamates and a gold-catalyzed intramolecular hydroarylation to palladium-catalyzed Suzuki-Miyaura and Sonogashira cross-couplings within the cytoplasm or on the surface of living cells. The design of bioorthogonal catalyst/substrate pairs, which can passively diffuse into cells, combines the advantages of small molecules with catalysis and promises to provide exciting new tools for future chemical biology studies. This feature article reviews and discusses recent progress with the design of synthetic metal complexes as catalysts for applications in living biological systems.</description><subject>Animals</subject><subject>Catalysis</subject><subject>Cell Survival</subject><subject>Cells - chemistry</subject><subject>Cells - cytology</subject><subject>Cells - metabolism</subject><subject>Glutathione - chemistry</subject><subject>Glutathione - metabolism</subject><subject>Humans</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Metals - chemistry</subject><subject>NAD - chemistry</subject><subject>NAD - metabolism</subject><subject>Organometallic Compounds - chemistry</subject><subject>Organometallic Compounds - metabolism</subject><subject>Singlet Oxygen - chemistry</subject><subject>Singlet Oxygen - metabolism</subject><subject>Superoxide Dismutase - chemistry</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Superoxides - chemistry</subject><subject>Superoxides - metabolism</subject><issn>1359-7345</issn><issn>1364-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUB_AgipvTi3el3kSoJnlJkxxH8RdMvCh4K1majki61qYV99-buTlv5pI83iePxxehU4KvCQZ1Y6gxICRQvYfGBDKWcibf9tdvrlIBjI_QUQjvOB7C5SEaUaAcY6HGiD3ZXvvENHXr7VdidKxWwYXELRPvPt1ykcxd45uFM5GFVehtHY7RQaV9sCfbe4Je725f8od09nz_mE9nqQHgfWqBMgU2U5RITmWmlJYybmCJVQxnSmeWxYoTjksBVAksuOaqUlDO40cOE3S5mdt2zcdgQ1_ULhjrvV7aZggFoZJKEJRApFcbaromhM5WRdu5WnerguBinVKR0zz_SWka8fl27jCvbbmjv7FEcLEBXTC77l_MRVtW0Zz9Z-AbINB0qQ</recordid><startdate>20130225</startdate><enddate>20130225</enddate><creator>Sasmal, Pijus K</creator><creator>Streu, Craig N</creator><creator>Meggers, Eric</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130225</creationdate><title>Metal complex catalysis in living biological systems</title><author>Sasmal, Pijus K ; Streu, Craig N ; Meggers, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-e32493e69218528699a88015e1e94069a6e415e5150d73297075a59f93db49353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Catalysis</topic><topic>Cell Survival</topic><topic>Cells - chemistry</topic><topic>Cells - cytology</topic><topic>Cells - metabolism</topic><topic>Glutathione - chemistry</topic><topic>Glutathione - metabolism</topic><topic>Humans</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Metals - chemistry</topic><topic>NAD - chemistry</topic><topic>NAD - metabolism</topic><topic>Organometallic Compounds - chemistry</topic><topic>Organometallic Compounds - metabolism</topic><topic>Singlet Oxygen - chemistry</topic><topic>Singlet Oxygen - metabolism</topic><topic>Superoxide Dismutase - chemistry</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Superoxides - chemistry</topic><topic>Superoxides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sasmal, Pijus K</creatorcontrib><creatorcontrib>Streu, Craig N</creatorcontrib><creatorcontrib>Meggers, Eric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical communications (Cambridge, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sasmal, Pijus K</au><au>Streu, Craig N</au><au>Meggers, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal complex catalysis in living biological systems</atitle><jtitle>Chemical communications (Cambridge, England)</jtitle><addtitle>Chem Commun (Camb)</addtitle><date>2013-02-25</date><risdate>2013</risdate><volume>49</volume><issue>16</issue><spage>1581</spage><epage>1587</epage><pages>1581-1587</pages><issn>1359-7345</issn><eissn>1364-548X</eissn><abstract>This feature article discusses synthetic metal complexes that are capable of catalyzing chemical transformations in living organisms. Photodynamic therapy exemplifies what is probably the most established artificial catalytic process exploited in medicine, namely the photosensitized catalytic generation of cell-damaging singlet oxygen. Different redox catalysts have been designed over the last two decades to target a variety of redox alterations in cancer and other diseases. For example, pentaazamacrocyclic manganese( ii ) complexes catalyze the dismutation of superoxide to O 2 and H 2 O 2 in vivo and thus reduce oxidative stress in analogy to the native enzyme superoxide dismutase. Recently, piano-stool ruthenium and iridium complexes were reported to influence cellular redox homeostasis indirectly by catalytic glutathione oxidation and catalytic transfer hydrogenation using the coenzyme NADH, respectively. Over the last few years, significant progress has been made towards the application of non-biological reactions in living systems, ranging from the organoruthenium-catalyzed cleavage of allylcarbamates and a gold-catalyzed intramolecular hydroarylation to palladium-catalyzed Suzuki-Miyaura and Sonogashira cross-couplings within the cytoplasm or on the surface of living cells. The design of bioorthogonal catalyst/substrate pairs, which can passively diffuse into cells, combines the advantages of small molecules with catalysis and promises to provide exciting new tools for future chemical biology studies. This feature article reviews and discusses recent progress with the design of synthetic metal complexes as catalysts for applications in living biological systems.</abstract><cop>England</cop><pmid>23250079</pmid><doi>10.1039/c2cc37832a</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-7345
ispartof Chemical communications (Cambridge, England), 2013-02, Vol.49 (16), p.1581-1587
issn 1359-7345
1364-548X
language eng
recordid cdi_crossref_primary_10_1039_C2CC37832A
source Royal Society of Chemistry
subjects Animals
Catalysis
Cell Survival
Cells - chemistry
Cells - cytology
Cells - metabolism
Glutathione - chemistry
Glutathione - metabolism
Humans
Hydrogen Peroxide - chemistry
Hydrogen Peroxide - metabolism
Metals - chemistry
NAD - chemistry
NAD - metabolism
Organometallic Compounds - chemistry
Organometallic Compounds - metabolism
Singlet Oxygen - chemistry
Singlet Oxygen - metabolism
Superoxide Dismutase - chemistry
Superoxide Dismutase - metabolism
Superoxides - chemistry
Superoxides - metabolism
title Metal complex catalysis in living biological systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A37%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%20complex%20catalysis%20in%20living%20biological%20systems&rft.jtitle=Chemical%20communications%20(Cambridge,%20England)&rft.au=Sasmal,%20Pijus%20K&rft.date=2013-02-25&rft.volume=49&rft.issue=16&rft.spage=1581&rft.epage=1587&rft.pages=1581-1587&rft.issn=1359-7345&rft.eissn=1364-548X&rft_id=info:doi/10.1039/c2cc37832a&rft_dat=%3Cproquest_cross%3E1282837213%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-e32493e69218528699a88015e1e94069a6e415e5150d73297075a59f93db49353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1282837213&rft_id=info:pmid/23250079&rfr_iscdi=true