Loading…

Employment of nanomaterials in polymerase chain reaction: insight into the impacts and putative operating mechanisms of nano-additives in PCR

The unique ability to rapidly amplify low copy number DNA has made in vitro Polymerase Chain Reaction one of the most fundamental techniques in modern biology. In order to harness this technique to its full potential, certain obstacles such as nonspecific by-products, low yield and complexity of GC...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2014, Vol.4 (69), p.36800-36814
Main Authors: Yuce, Meral, Kurt, Hasan, Mokkapati, Venkata R. S. S., Budak, Hikmet
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The unique ability to rapidly amplify low copy number DNA has made in vitro Polymerase Chain Reaction one of the most fundamental techniques in modern biology. In order to harness this technique to its full potential, certain obstacles such as nonspecific by-products, low yield and complexity of GC rich and long genomic DNA amplification need to be surmounted. As in vitro PCR does not have any regulatory mechanisms unlike its counterpart in vivo DNA replication machinery, scientists often use a number of additives like glycerol, betaine, dimethyl sulphoxide and formamide in order to achieve the perfection of in vivo systems. In the last two decades nanotechnology has provided excellent solutions to many classical problems in various scientific fields including biotechnology and recently the PCR technique has begun to benefit from this so called “Nano Era”. In this review, the impacts of several nanomaterials on PCR efficiency, specificity and fidelity are described in accordance with the recent literature. Putative interaction mechanisms between nanomaterials and primary PCR components are also addressed in a comprehensive manner.
ISSN:2046-2069
2046-2069
DOI:10.1039/C4RA06144F