Loading…

Nanosilica/carbon composite spheres as anodes in Li-ion batteries with excellent cycle stability

Because of its high capacity, relatively low operation potentials, abundance and environmental benevolence, silica is a promising anode material for high-energy lithium-ion batteries. In this work, to enhance the conductivity of silica and ensure robust connection between silica particles and the ho...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2015-01, Vol.3 (4), p.1476-1482
Main Authors: Li, Mingqi, Yu, Yan, Li, Jing, Chen, Baoling, Wu, Xianwen, Tian, Ye, Chen, P.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c268t-866bacf1f907153e31f3f26cda46ce81a1aac6f77dba355c70481771d84e5c973
cites cdi_FETCH-LOGICAL-c268t-866bacf1f907153e31f3f26cda46ce81a1aac6f77dba355c70481771d84e5c973
container_end_page 1482
container_issue 4
container_start_page 1476
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 3
creator Li, Mingqi
Yu, Yan
Li, Jing
Chen, Baoling
Wu, Xianwen
Tian, Ye
Chen, P.
description Because of its high capacity, relatively low operation potentials, abundance and environmental benevolence, silica is a promising anode material for high-energy lithium-ion batteries. In this work, to enhance the conductivity of silica and ensure robust connection between silica particles and the host structure in the anode, nanosilica/carbon composite spheres have been fabricated via the in situ copolymerization of formaldehyde and resorcinol on the surface of nanosilica particles, followed by carbonization in an inert atmosphere. The electrochemical properties of the as-prepared composite as an anode for lithium-ion batteries are evaluated. When cycled at a current density of 100 mA g −1 with a voltage window of 0.0–3.0 V the nanosilica/carbon composite spheres present a stable capacity of about 620 mA h g −1 (calculated from the mass of the nanosilica/carbon composite spheres), and the capacity retention is nearly 100% after 300 cycles. Moreover, at different current densities, the as-prepared composite exhibits high capacity and excellent cycle stability. The good electrochemical performance is attributed to the relatively small volume variation of silica nanoparticles, existence of pores/voids in the composite and robust connection between silica nanoparticles and the carbon matrix.
doi_str_mv 10.1039/C4TA05288A
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C4TA05288A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_C4TA05288A</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-866bacf1f907153e31f3f26cda46ce81a1aac6f77dba355c70481771d84e5c973</originalsourceid><addsrcrecordid>eNpFUE1LxDAUDKLgsu7FX9CzUDdpmo8eS_ELil7Wc319TdhIty1JQPvvjSj6GHjDMDOHIeSa0VtGebVvykNNRaF1fUY2BRU0V2Ulz_-41pdkF8I7TacplVW1IW_PMM3BjQ5hj-D7ecpwPi1JiiYLy9F4EzJImOYhMTdlrctdcvUQo_EuaR8uHjPziWYczRQzXHFM0Qh9ao3rFbmwMAaz-_1b8np_d2ge8_bl4amp2xwLqWOupewBLbMVVUxww5nltpA4QCnRaAYMAKVVauiBC4GKlpopxQZdGoGV4lty89OLfg7BG9st3p3Arx2j3fc83f88_AsenFkO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanosilica/carbon composite spheres as anodes in Li-ion batteries with excellent cycle stability</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Li, Mingqi ; Yu, Yan ; Li, Jing ; Chen, Baoling ; Wu, Xianwen ; Tian, Ye ; Chen, P.</creator><creatorcontrib>Li, Mingqi ; Yu, Yan ; Li, Jing ; Chen, Baoling ; Wu, Xianwen ; Tian, Ye ; Chen, P.</creatorcontrib><description>Because of its high capacity, relatively low operation potentials, abundance and environmental benevolence, silica is a promising anode material for high-energy lithium-ion batteries. In this work, to enhance the conductivity of silica and ensure robust connection between silica particles and the host structure in the anode, nanosilica/carbon composite spheres have been fabricated via the in situ copolymerization of formaldehyde and resorcinol on the surface of nanosilica particles, followed by carbonization in an inert atmosphere. The electrochemical properties of the as-prepared composite as an anode for lithium-ion batteries are evaluated. When cycled at a current density of 100 mA g −1 with a voltage window of 0.0–3.0 V the nanosilica/carbon composite spheres present a stable capacity of about 620 mA h g −1 (calculated from the mass of the nanosilica/carbon composite spheres), and the capacity retention is nearly 100% after 300 cycles. Moreover, at different current densities, the as-prepared composite exhibits high capacity and excellent cycle stability. The good electrochemical performance is attributed to the relatively small volume variation of silica nanoparticles, existence of pores/voids in the composite and robust connection between silica nanoparticles and the carbon matrix.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C4TA05288A</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2015-01, Vol.3 (4), p.1476-1482</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-866bacf1f907153e31f3f26cda46ce81a1aac6f77dba355c70481771d84e5c973</citedby><cites>FETCH-LOGICAL-c268t-866bacf1f907153e31f3f26cda46ce81a1aac6f77dba355c70481771d84e5c973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Mingqi</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Chen, Baoling</creatorcontrib><creatorcontrib>Wu, Xianwen</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Chen, P.</creatorcontrib><title>Nanosilica/carbon composite spheres as anodes in Li-ion batteries with excellent cycle stability</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Because of its high capacity, relatively low operation potentials, abundance and environmental benevolence, silica is a promising anode material for high-energy lithium-ion batteries. In this work, to enhance the conductivity of silica and ensure robust connection between silica particles and the host structure in the anode, nanosilica/carbon composite spheres have been fabricated via the in situ copolymerization of formaldehyde and resorcinol on the surface of nanosilica particles, followed by carbonization in an inert atmosphere. The electrochemical properties of the as-prepared composite as an anode for lithium-ion batteries are evaluated. When cycled at a current density of 100 mA g −1 with a voltage window of 0.0–3.0 V the nanosilica/carbon composite spheres present a stable capacity of about 620 mA h g −1 (calculated from the mass of the nanosilica/carbon composite spheres), and the capacity retention is nearly 100% after 300 cycles. Moreover, at different current densities, the as-prepared composite exhibits high capacity and excellent cycle stability. The good electrochemical performance is attributed to the relatively small volume variation of silica nanoparticles, existence of pores/voids in the composite and robust connection between silica nanoparticles and the carbon matrix.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFUE1LxDAUDKLgsu7FX9CzUDdpmo8eS_ELil7Wc319TdhIty1JQPvvjSj6GHjDMDOHIeSa0VtGebVvykNNRaF1fUY2BRU0V2Ulz_-41pdkF8I7TacplVW1IW_PMM3BjQ5hj-D7ecpwPi1JiiYLy9F4EzJImOYhMTdlrctdcvUQo_EuaR8uHjPziWYczRQzXHFM0Qh9ao3rFbmwMAaz-_1b8np_d2ge8_bl4amp2xwLqWOupewBLbMVVUxww5nltpA4QCnRaAYMAKVVauiBC4GKlpopxQZdGoGV4lty89OLfg7BG9st3p3Arx2j3fc83f88_AsenFkO</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Li, Mingqi</creator><creator>Yu, Yan</creator><creator>Li, Jing</creator><creator>Chen, Baoling</creator><creator>Wu, Xianwen</creator><creator>Tian, Ye</creator><creator>Chen, P.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150101</creationdate><title>Nanosilica/carbon composite spheres as anodes in Li-ion batteries with excellent cycle stability</title><author>Li, Mingqi ; Yu, Yan ; Li, Jing ; Chen, Baoling ; Wu, Xianwen ; Tian, Ye ; Chen, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-866bacf1f907153e31f3f26cda46ce81a1aac6f77dba355c70481771d84e5c973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mingqi</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Chen, Baoling</creatorcontrib><creatorcontrib>Wu, Xianwen</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Chen, P.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mingqi</au><au>Yu, Yan</au><au>Li, Jing</au><au>Chen, Baoling</au><au>Wu, Xianwen</au><au>Tian, Ye</au><au>Chen, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanosilica/carbon composite spheres as anodes in Li-ion batteries with excellent cycle stability</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>3</volume><issue>4</issue><spage>1476</spage><epage>1482</epage><pages>1476-1482</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Because of its high capacity, relatively low operation potentials, abundance and environmental benevolence, silica is a promising anode material for high-energy lithium-ion batteries. In this work, to enhance the conductivity of silica and ensure robust connection between silica particles and the host structure in the anode, nanosilica/carbon composite spheres have been fabricated via the in situ copolymerization of formaldehyde and resorcinol on the surface of nanosilica particles, followed by carbonization in an inert atmosphere. The electrochemical properties of the as-prepared composite as an anode for lithium-ion batteries are evaluated. When cycled at a current density of 100 mA g −1 with a voltage window of 0.0–3.0 V the nanosilica/carbon composite spheres present a stable capacity of about 620 mA h g −1 (calculated from the mass of the nanosilica/carbon composite spheres), and the capacity retention is nearly 100% after 300 cycles. Moreover, at different current densities, the as-prepared composite exhibits high capacity and excellent cycle stability. The good electrochemical performance is attributed to the relatively small volume variation of silica nanoparticles, existence of pores/voids in the composite and robust connection between silica nanoparticles and the carbon matrix.</abstract><doi>10.1039/C4TA05288A</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2015-01, Vol.3 (4), p.1476-1482
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_C4TA05288A
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
title Nanosilica/carbon composite spheres as anodes in Li-ion batteries with excellent cycle stability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A18%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanosilica/carbon%20composite%20spheres%20as%20anodes%20in%20Li-ion%20batteries%20with%20excellent%20cycle%20stability&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Li,%20Mingqi&rft.date=2015-01-01&rft.volume=3&rft.issue=4&rft.spage=1476&rft.epage=1482&rft.pages=1476-1482&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C4TA05288A&rft_dat=%3Ccrossref%3E10_1039_C4TA05288A%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-866bacf1f907153e31f3f26cda46ce81a1aac6f77dba355c70481771d84e5c973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true