Loading…
Highly-sensitive epinephrine sensors based on organic electrochemical transistors with carbon nanomaterial modified gate electrodes
Organic electrochemical transistors (OECTs) have been found to be excellent transducers for various types of biosensors. Here, we report highly sensitive epinephrine sensors based on OECTs prepared on glass substrates by a solution process. The device performance is optimized by immobilizing Nafion...
Saved in:
Published in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2015-01, Vol.3 (25), p.6532-6538 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Organic electrochemical transistors (OECTs) have been found to be excellent transducers for various types of biosensors. Here, we report highly sensitive epinephrine sensors based on OECTs prepared on glass substrates by a solution process. The device performance is optimized by immobilizing Nafion and carbon-based nanomaterials, including carbon nanotubes, graphene and graphene oxide, on the gate electrodes of OECTs. The detection limit of the sensors is down to 0.1 nM, which can cover the concentration level of epinephrine in medical detections. Considering that the devices can be prepared by a facile solution process with low cost, the highly sensitive epinephrine sensors will be ideal transducers for disposable applications in the future. |
---|---|
ISSN: | 2050-7526 2050-7534 |
DOI: | 10.1039/C5TC01100K |