Loading…

Effective medium theory for the conductivity of disordered metallic nanowire networks

Motivated by numerous technological applications, there is current interest in the study of the conductive properties of networks made of randomly dispersed nanowires. The sheet resistance of such networks is normally calculated by numerically evaluating the conductance of a system of resistors but...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2016-10, Vol.18 (39), p.27564-27571
Main Authors: O'Callaghan, Colin, Gomes da Rocha, Claudia, Manning, Hugh G, Boland, John J, Ferreira, Mauro S
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-3f69938863777cf1f8046c00ed98d79ffd2b9c80902c16944c573b05e524e9853
cites cdi_FETCH-LOGICAL-c386t-3f69938863777cf1f8046c00ed98d79ffd2b9c80902c16944c573b05e524e9853
container_end_page 27571
container_issue 39
container_start_page 27564
container_title Physical chemistry chemical physics : PCCP
container_volume 18
creator O'Callaghan, Colin
Gomes da Rocha, Claudia
Manning, Hugh G
Boland, John J
Ferreira, Mauro S
description Motivated by numerous technological applications, there is current interest in the study of the conductive properties of networks made of randomly dispersed nanowires. The sheet resistance of such networks is normally calculated by numerically evaluating the conductance of a system of resistors but due to disorder and with so many variables to account for, calculations of this type are computationally demanding and may lack mathematical transparency. Here we establish the equivalence between the sheet resistance of disordered networks and that of a regular ordered network. Rather than through a fitting scheme, we provide a recipe to find the effective medium network that captures how the resistance of a nanowire network depends on several different parameters such as wire density, electrode size and electrode separation. Furthermore, the effective medium approach provides a simple way to distinguish the sheet resistance contribution of the junctions from that of the nanowires themselves. The contrast between these two contributions determines the potential to optimize the network performance for a particular application. An analytical model with dependance on all important underlying parameters to calculate the electrical properties of nanowire networks is presented.
doi_str_mv 10.1039/c6cp05187a
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C6CP05187A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835399094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-3f69938863777cf1f8046c00ed98d79ffd2b9c80902c16944c573b05e524e9853</originalsourceid><addsrcrecordid>eNpFkT1PwzAQhi0EoqWwsIM8IqSAHTv-GKuofEiVYKBzlNpnEUjiYidU_fektJTpXumee4fnELqk5I4Spu-NMCuSUSXLIzSmXLBEE8WPD1mKETqL8YMQQjPKTtEolTJNOeFjtJg5B6arvgE3YKu-wd07-LDBzodtxMa3tt8CVbfB3mFbRR8sBLDDQVfWdWVwW7Z-XQXALXRrHz7jOTpxZR3hYj8naPEwe8ufkvnL43M-nSeGKdElzAmtmVKCSSmNo04RLgwhYLWyUjtn06U2imiSGio05yaTbEkyyFIOWmVsgm52vavgv3qIXdFU0UBdly34PhZUsYxpTTQf0NsdaoKPMYArVqFqyrApKCm2Gotc5K-_GqcDfL3v7ZeDlgP6520ArnZAiOaw_f8D-wEpE3c7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835399094</pqid></control><display><type>article</type><title>Effective medium theory for the conductivity of disordered metallic nanowire networks</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>O'Callaghan, Colin ; Gomes da Rocha, Claudia ; Manning, Hugh G ; Boland, John J ; Ferreira, Mauro S</creator><creatorcontrib>O'Callaghan, Colin ; Gomes da Rocha, Claudia ; Manning, Hugh G ; Boland, John J ; Ferreira, Mauro S</creatorcontrib><description>Motivated by numerous technological applications, there is current interest in the study of the conductive properties of networks made of randomly dispersed nanowires. The sheet resistance of such networks is normally calculated by numerically evaluating the conductance of a system of resistors but due to disorder and with so many variables to account for, calculations of this type are computationally demanding and may lack mathematical transparency. Here we establish the equivalence between the sheet resistance of disordered networks and that of a regular ordered network. Rather than through a fitting scheme, we provide a recipe to find the effective medium network that captures how the resistance of a nanowire network depends on several different parameters such as wire density, electrode size and electrode separation. Furthermore, the effective medium approach provides a simple way to distinguish the sheet resistance contribution of the junctions from that of the nanowires themselves. The contrast between these two contributions determines the potential to optimize the network performance for a particular application. An analytical model with dependance on all important underlying parameters to calculate the electrical properties of nanowire networks is presented.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c6cp05187a</identifier><identifier>PMID: 27722404</identifier><language>eng</language><publisher>England</publisher><ispartof>Physical chemistry chemical physics : PCCP, 2016-10, Vol.18 (39), p.27564-27571</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-3f69938863777cf1f8046c00ed98d79ffd2b9c80902c16944c573b05e524e9853</citedby><cites>FETCH-LOGICAL-c386t-3f69938863777cf1f8046c00ed98d79ffd2b9c80902c16944c573b05e524e9853</cites><orcidid>0000-0001-6803-7297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27722404$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Callaghan, Colin</creatorcontrib><creatorcontrib>Gomes da Rocha, Claudia</creatorcontrib><creatorcontrib>Manning, Hugh G</creatorcontrib><creatorcontrib>Boland, John J</creatorcontrib><creatorcontrib>Ferreira, Mauro S</creatorcontrib><title>Effective medium theory for the conductivity of disordered metallic nanowire networks</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Motivated by numerous technological applications, there is current interest in the study of the conductive properties of networks made of randomly dispersed nanowires. The sheet resistance of such networks is normally calculated by numerically evaluating the conductance of a system of resistors but due to disorder and with so many variables to account for, calculations of this type are computationally demanding and may lack mathematical transparency. Here we establish the equivalence between the sheet resistance of disordered networks and that of a regular ordered network. Rather than through a fitting scheme, we provide a recipe to find the effective medium network that captures how the resistance of a nanowire network depends on several different parameters such as wire density, electrode size and electrode separation. Furthermore, the effective medium approach provides a simple way to distinguish the sheet resistance contribution of the junctions from that of the nanowires themselves. The contrast between these two contributions determines the potential to optimize the network performance for a particular application. An analytical model with dependance on all important underlying parameters to calculate the electrical properties of nanowire networks is presented.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpFkT1PwzAQhi0EoqWwsIM8IqSAHTv-GKuofEiVYKBzlNpnEUjiYidU_fektJTpXumee4fnELqk5I4Spu-NMCuSUSXLIzSmXLBEE8WPD1mKETqL8YMQQjPKTtEolTJNOeFjtJg5B6arvgE3YKu-wd07-LDBzodtxMa3tt8CVbfB3mFbRR8sBLDDQVfWdWVwW7Z-XQXALXRrHz7jOTpxZR3hYj8naPEwe8ufkvnL43M-nSeGKdElzAmtmVKCSSmNo04RLgwhYLWyUjtn06U2imiSGio05yaTbEkyyFIOWmVsgm52vavgv3qIXdFU0UBdly34PhZUsYxpTTQf0NsdaoKPMYArVqFqyrApKCm2Gotc5K-_GqcDfL3v7ZeDlgP6520ArnZAiOaw_f8D-wEpE3c7</recordid><startdate>20161005</startdate><enddate>20161005</enddate><creator>O'Callaghan, Colin</creator><creator>Gomes da Rocha, Claudia</creator><creator>Manning, Hugh G</creator><creator>Boland, John J</creator><creator>Ferreira, Mauro S</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6803-7297</orcidid></search><sort><creationdate>20161005</creationdate><title>Effective medium theory for the conductivity of disordered metallic nanowire networks</title><author>O'Callaghan, Colin ; Gomes da Rocha, Claudia ; Manning, Hugh G ; Boland, John J ; Ferreira, Mauro S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-3f69938863777cf1f8046c00ed98d79ffd2b9c80902c16944c573b05e524e9853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Callaghan, Colin</creatorcontrib><creatorcontrib>Gomes da Rocha, Claudia</creatorcontrib><creatorcontrib>Manning, Hugh G</creatorcontrib><creatorcontrib>Boland, John J</creatorcontrib><creatorcontrib>Ferreira, Mauro S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Callaghan, Colin</au><au>Gomes da Rocha, Claudia</au><au>Manning, Hugh G</au><au>Boland, John J</au><au>Ferreira, Mauro S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective medium theory for the conductivity of disordered metallic nanowire networks</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2016-10-05</date><risdate>2016</risdate><volume>18</volume><issue>39</issue><spage>27564</spage><epage>27571</epage><pages>27564-27571</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Motivated by numerous technological applications, there is current interest in the study of the conductive properties of networks made of randomly dispersed nanowires. The sheet resistance of such networks is normally calculated by numerically evaluating the conductance of a system of resistors but due to disorder and with so many variables to account for, calculations of this type are computationally demanding and may lack mathematical transparency. Here we establish the equivalence between the sheet resistance of disordered networks and that of a regular ordered network. Rather than through a fitting scheme, we provide a recipe to find the effective medium network that captures how the resistance of a nanowire network depends on several different parameters such as wire density, electrode size and electrode separation. Furthermore, the effective medium approach provides a simple way to distinguish the sheet resistance contribution of the junctions from that of the nanowires themselves. The contrast between these two contributions determines the potential to optimize the network performance for a particular application. An analytical model with dependance on all important underlying parameters to calculate the electrical properties of nanowire networks is presented.</abstract><cop>England</cop><pmid>27722404</pmid><doi>10.1039/c6cp05187a</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6803-7297</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2016-10, Vol.18 (39), p.27564-27571
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_C6CP05187A
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
title Effective medium theory for the conductivity of disordered metallic nanowire networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20medium%20theory%20for%20the%20conductivity%20of%20disordered%20metallic%20nanowire%20networks&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=O'Callaghan,%20Colin&rft.date=2016-10-05&rft.volume=18&rft.issue=39&rft.spage=27564&rft.epage=27571&rft.pages=27564-27571&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c6cp05187a&rft_dat=%3Cproquest_cross%3E1835399094%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-3f69938863777cf1f8046c00ed98d79ffd2b9c80902c16944c573b05e524e9853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835399094&rft_id=info:pmid/27722404&rfr_iscdi=true