Loading…
ESR study of atomic hydrogen and tritium in solid T 2 and T 2 :H 2 matrices below 1 K
We report on the first ESR study of atomic hydrogen and tritium stabilized in solid T and T :H matrices down to 70 mK. The concentrations of T atoms in pure T approached 2 × 10 cm (0.60%) and record-high concentrations of H atoms ∼1 × 10 cm (0.33%) were reached in T :H solid mixtures where a fractio...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2017-01, Vol.19 (4), p.2834-2842 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report on the first ESR study of atomic hydrogen and tritium stabilized in solid T
and T
:H
matrices down to 70 mK. The concentrations of T atoms in pure T
approached 2 × 10
cm
(0.60%) and record-high concentrations of H atoms ∼1 × 10
cm
(0.33%) were reached in T
:H
solid mixtures where a fraction of T atoms became converted into H due to the isotopic exchange reaction T + H
→ TH + H. The maximum concentrations of unpaired T and H atoms were limited by their recombination which becomes enhanced by efficient atomic diffusion due to the presence of a large number of vacancies and phonons generated in the matrices by β-particles. Recombination also appeared in an explosive manner, both being stimulated and spontaneously in thick films where sample cooling was insufficient. We suggest that the main mechanism for H and T migration is physical diffusion related to tunneling or hopping to vacant sites in contrast to tunneling chemical exchange reactions which govern diffusion of H and D atoms created in H
and D
matrices by other methods. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c6cp06933a |