Loading…
Colloidal heat engines: a review
Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. Here we review recent experimental realizations of microscopic heat engines. We first revisit the theoretical framework of stochastic thermodynamics that allows to describe the fluctuating behavior of the...
Saved in:
Published in: | Soft matter 2017, Vol.13 (1), p.22-36 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c479t-3caa284626af615f7623cce5227df5eba9b1bc042893dde7bc2784cff8c388263 |
---|---|
cites | cdi_FETCH-LOGICAL-c479t-3caa284626af615f7623cce5227df5eba9b1bc042893dde7bc2784cff8c388263 |
container_end_page | 36 |
container_issue | 1 |
container_start_page | 22 |
container_title | Soft matter |
container_volume | 13 |
creator | Martínez, Ignacio A Roldán, Édgar Dinis, Luis Rica, Raúl A |
description | Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. Here we review recent experimental realizations of microscopic heat engines. We first revisit the theoretical framework of stochastic thermodynamics that allows to describe the fluctuating behavior of the energy fluxes that occur at mesoscopic scales, and then discuss recent implementations of the colloidal equivalents to the macroscopic Stirling, Carnot and steam engines. These small-scale motors exhibit unique features in terms of power and efficiency fluctuations that have no equivalent in the macroscopic world. We also consider a second pathway for work extraction from colloidal engines operating between active bacterial reservoirs at different temperatures, which could significantly boost the performance of passive heat engines at the mesoscale. Finally, we provide some guidance on how the work extracted from colloidal heat engines can be used to generate net particle or energy currents, proposing a new generation of experiments with colloidal systems.
Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. |
doi_str_mv | 10.1039/c6sm00923a |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C6SM00923A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826740406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-3caa284626af615f7623cce5227df5eba9b1bc042893dde7bc2784cff8c388263</originalsourceid><addsrcrecordid>eNqN0c1LwzAYBvAgitPpxbtSbyJU89XkjbdR_IKJBxW8lTR9o5V2ncmm-N-7uTlvslNeeH48hyeEHDB6xqgw507FllLDhd0gO0xLmSqQsLm6xXOP7Mb4RqkAydQ26XEttYZM7ZAk75qmqyvbJK9oJwmOXuoRxovEJgE_avzcI1veNhH3l2-fPF1dPuY36fD--jYfDFMntZmkwlnLQSqurFcs81px4RxmnOvKZ1haU7LSUcnBiKpCXTquQTrvwQkArkSfnCx6x6F7n2KcFG0dHTaNHWE3jQUDbQwA0-vQzEgwnLI1KFdaUknnracL6kIXY0BfjEPd2vBVMFrMdy5y9XD3s_Ngho-WvdOyxWpFf4edgcMFCNGt0r-PmuXH_-XFuPLiG5dBitI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826740406</pqid></control><display><type>article</type><title>Colloidal heat engines: a review</title><source>Royal Society of Chemistry</source><creator>Martínez, Ignacio A ; Roldán, Édgar ; Dinis, Luis ; Rica, Raúl A</creator><creatorcontrib>Martínez, Ignacio A ; Roldán, Édgar ; Dinis, Luis ; Rica, Raúl A</creatorcontrib><description>Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. Here we review recent experimental realizations of microscopic heat engines. We first revisit the theoretical framework of stochastic thermodynamics that allows to describe the fluctuating behavior of the energy fluxes that occur at mesoscopic scales, and then discuss recent implementations of the colloidal equivalents to the macroscopic Stirling, Carnot and steam engines. These small-scale motors exhibit unique features in terms of power and efficiency fluctuations that have no equivalent in the macroscopic world. We also consider a second pathway for work extraction from colloidal engines operating between active bacterial reservoirs at different temperatures, which could significantly boost the performance of passive heat engines at the mesoscale. Finally, we provide some guidance on how the work extracted from colloidal heat engines can be used to generate net particle or energy currents, proposing a new generation of experiments with colloidal systems.
Stochastic heat engines can be built using colloidal particles trapped using optical tweezers.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c6sm00923a</identifier><identifier>PMID: 27477856</identifier><language>eng</language><publisher>England</publisher><subject>Bacteria ; Colloids ; Equivalence ; Extraction ; Fluctuation ; Heat engines ; Reservoirs ; Stochasticity</subject><ispartof>Soft matter, 2017, Vol.13 (1), p.22-36</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-3caa284626af615f7623cce5227df5eba9b1bc042893dde7bc2784cff8c388263</citedby><cites>FETCH-LOGICAL-c479t-3caa284626af615f7623cce5227df5eba9b1bc042893dde7bc2784cff8c388263</cites><orcidid>0000-0001-5308-9422 ; 0000-0001-7196-8404 ; 0000-0002-0208-7790 ; 0000-0003-2064-2396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27477856$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martínez, Ignacio A</creatorcontrib><creatorcontrib>Roldán, Édgar</creatorcontrib><creatorcontrib>Dinis, Luis</creatorcontrib><creatorcontrib>Rica, Raúl A</creatorcontrib><title>Colloidal heat engines: a review</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. Here we review recent experimental realizations of microscopic heat engines. We first revisit the theoretical framework of stochastic thermodynamics that allows to describe the fluctuating behavior of the energy fluxes that occur at mesoscopic scales, and then discuss recent implementations of the colloidal equivalents to the macroscopic Stirling, Carnot and steam engines. These small-scale motors exhibit unique features in terms of power and efficiency fluctuations that have no equivalent in the macroscopic world. We also consider a second pathway for work extraction from colloidal engines operating between active bacterial reservoirs at different temperatures, which could significantly boost the performance of passive heat engines at the mesoscale. Finally, we provide some guidance on how the work extracted from colloidal heat engines can be used to generate net particle or energy currents, proposing a new generation of experiments with colloidal systems.
Stochastic heat engines can be built using colloidal particles trapped using optical tweezers.</description><subject>Bacteria</subject><subject>Colloids</subject><subject>Equivalence</subject><subject>Extraction</subject><subject>Fluctuation</subject><subject>Heat engines</subject><subject>Reservoirs</subject><subject>Stochasticity</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqN0c1LwzAYBvAgitPpxbtSbyJU89XkjbdR_IKJBxW8lTR9o5V2ncmm-N-7uTlvslNeeH48hyeEHDB6xqgw507FllLDhd0gO0xLmSqQsLm6xXOP7Mb4RqkAydQ26XEttYZM7ZAk75qmqyvbJK9oJwmOXuoRxovEJgE_avzcI1veNhH3l2-fPF1dPuY36fD--jYfDFMntZmkwlnLQSqurFcs81px4RxmnOvKZ1haU7LSUcnBiKpCXTquQTrvwQkArkSfnCx6x6F7n2KcFG0dHTaNHWE3jQUDbQwA0-vQzEgwnLI1KFdaUknnracL6kIXY0BfjEPd2vBVMFrMdy5y9XD3s_Ngho-WvdOyxWpFf4edgcMFCNGt0r-PmuXH_-XFuPLiG5dBitI</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Martínez, Ignacio A</creator><creator>Roldán, Édgar</creator><creator>Dinis, Luis</creator><creator>Rica, Raúl A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5308-9422</orcidid><orcidid>https://orcid.org/0000-0001-7196-8404</orcidid><orcidid>https://orcid.org/0000-0002-0208-7790</orcidid><orcidid>https://orcid.org/0000-0003-2064-2396</orcidid></search><sort><creationdate>2017</creationdate><title>Colloidal heat engines: a review</title><author>Martínez, Ignacio A ; Roldán, Édgar ; Dinis, Luis ; Rica, Raúl A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-3caa284626af615f7623cce5227df5eba9b1bc042893dde7bc2784cff8c388263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>Colloids</topic><topic>Equivalence</topic><topic>Extraction</topic><topic>Fluctuation</topic><topic>Heat engines</topic><topic>Reservoirs</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martínez, Ignacio A</creatorcontrib><creatorcontrib>Roldán, Édgar</creatorcontrib><creatorcontrib>Dinis, Luis</creatorcontrib><creatorcontrib>Rica, Raúl A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez, Ignacio A</au><au>Roldán, Édgar</au><au>Dinis, Luis</au><au>Rica, Raúl A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colloidal heat engines: a review</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2017</date><risdate>2017</risdate><volume>13</volume><issue>1</issue><spage>22</spage><epage>36</epage><pages>22-36</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. Here we review recent experimental realizations of microscopic heat engines. We first revisit the theoretical framework of stochastic thermodynamics that allows to describe the fluctuating behavior of the energy fluxes that occur at mesoscopic scales, and then discuss recent implementations of the colloidal equivalents to the macroscopic Stirling, Carnot and steam engines. These small-scale motors exhibit unique features in terms of power and efficiency fluctuations that have no equivalent in the macroscopic world. We also consider a second pathway for work extraction from colloidal engines operating between active bacterial reservoirs at different temperatures, which could significantly boost the performance of passive heat engines at the mesoscale. Finally, we provide some guidance on how the work extracted from colloidal heat engines can be used to generate net particle or energy currents, proposing a new generation of experiments with colloidal systems.
Stochastic heat engines can be built using colloidal particles trapped using optical tweezers.</abstract><cop>England</cop><pmid>27477856</pmid><doi>10.1039/c6sm00923a</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5308-9422</orcidid><orcidid>https://orcid.org/0000-0001-7196-8404</orcidid><orcidid>https://orcid.org/0000-0002-0208-7790</orcidid><orcidid>https://orcid.org/0000-0003-2064-2396</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2017, Vol.13 (1), p.22-36 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C6SM00923A |
source | Royal Society of Chemistry |
subjects | Bacteria Colloids Equivalence Extraction Fluctuation Heat engines Reservoirs Stochasticity |
title | Colloidal heat engines: a review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A28%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colloidal%20heat%20engines:%20a%20review&rft.jtitle=Soft%20matter&rft.au=Mart%C3%ADnez,%20Ignacio%20A&rft.date=2017&rft.volume=13&rft.issue=1&rft.spage=22&rft.epage=36&rft.pages=22-36&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c6sm00923a&rft_dat=%3Cproquest_cross%3E1826740406%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-3caa284626af615f7623cce5227df5eba9b1bc042893dde7bc2784cff8c388263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1826740406&rft_id=info:pmid/27477856&rfr_iscdi=true |