Loading…

Colloidal heat engines: a review

Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. Here we review recent experimental realizations of microscopic heat engines. We first revisit the theoretical framework of stochastic thermodynamics that allows to describe the fluctuating behavior of the...

Full description

Saved in:
Bibliographic Details
Published in:Soft matter 2017, Vol.13 (1), p.22-36
Main Authors: Martínez, Ignacio A, Roldán, Édgar, Dinis, Luis, Rica, Raúl A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c479t-3caa284626af615f7623cce5227df5eba9b1bc042893dde7bc2784cff8c388263
cites cdi_FETCH-LOGICAL-c479t-3caa284626af615f7623cce5227df5eba9b1bc042893dde7bc2784cff8c388263
container_end_page 36
container_issue 1
container_start_page 22
container_title Soft matter
container_volume 13
creator Martínez, Ignacio A
Roldán, Édgar
Dinis, Luis
Rica, Raúl A
description Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. Here we review recent experimental realizations of microscopic heat engines. We first revisit the theoretical framework of stochastic thermodynamics that allows to describe the fluctuating behavior of the energy fluxes that occur at mesoscopic scales, and then discuss recent implementations of the colloidal equivalents to the macroscopic Stirling, Carnot and steam engines. These small-scale motors exhibit unique features in terms of power and efficiency fluctuations that have no equivalent in the macroscopic world. We also consider a second pathway for work extraction from colloidal engines operating between active bacterial reservoirs at different temperatures, which could significantly boost the performance of passive heat engines at the mesoscale. Finally, we provide some guidance on how the work extracted from colloidal heat engines can be used to generate net particle or energy currents, proposing a new generation of experiments with colloidal systems. Stochastic heat engines can be built using colloidal particles trapped using optical tweezers.
doi_str_mv 10.1039/c6sm00923a
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C6SM00923A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826740406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-3caa284626af615f7623cce5227df5eba9b1bc042893dde7bc2784cff8c388263</originalsourceid><addsrcrecordid>eNqN0c1LwzAYBvAgitPpxbtSbyJU89XkjbdR_IKJBxW8lTR9o5V2ncmm-N-7uTlvslNeeH48hyeEHDB6xqgw507FllLDhd0gO0xLmSqQsLm6xXOP7Mb4RqkAydQ26XEttYZM7ZAk75qmqyvbJK9oJwmOXuoRxovEJgE_avzcI1veNhH3l2-fPF1dPuY36fD--jYfDFMntZmkwlnLQSqurFcs81px4RxmnOvKZ1haU7LSUcnBiKpCXTquQTrvwQkArkSfnCx6x6F7n2KcFG0dHTaNHWE3jQUDbQwA0-vQzEgwnLI1KFdaUknnracL6kIXY0BfjEPd2vBVMFrMdy5y9XD3s_Ngho-WvdOyxWpFf4edgcMFCNGt0r-PmuXH_-XFuPLiG5dBitI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826740406</pqid></control><display><type>article</type><title>Colloidal heat engines: a review</title><source>Royal Society of Chemistry</source><creator>Martínez, Ignacio A ; Roldán, Édgar ; Dinis, Luis ; Rica, Raúl A</creator><creatorcontrib>Martínez, Ignacio A ; Roldán, Édgar ; Dinis, Luis ; Rica, Raúl A</creatorcontrib><description>Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. Here we review recent experimental realizations of microscopic heat engines. We first revisit the theoretical framework of stochastic thermodynamics that allows to describe the fluctuating behavior of the energy fluxes that occur at mesoscopic scales, and then discuss recent implementations of the colloidal equivalents to the macroscopic Stirling, Carnot and steam engines. These small-scale motors exhibit unique features in terms of power and efficiency fluctuations that have no equivalent in the macroscopic world. We also consider a second pathway for work extraction from colloidal engines operating between active bacterial reservoirs at different temperatures, which could significantly boost the performance of passive heat engines at the mesoscale. Finally, we provide some guidance on how the work extracted from colloidal heat engines can be used to generate net particle or energy currents, proposing a new generation of experiments with colloidal systems. Stochastic heat engines can be built using colloidal particles trapped using optical tweezers.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c6sm00923a</identifier><identifier>PMID: 27477856</identifier><language>eng</language><publisher>England</publisher><subject>Bacteria ; Colloids ; Equivalence ; Extraction ; Fluctuation ; Heat engines ; Reservoirs ; Stochasticity</subject><ispartof>Soft matter, 2017, Vol.13 (1), p.22-36</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-3caa284626af615f7623cce5227df5eba9b1bc042893dde7bc2784cff8c388263</citedby><cites>FETCH-LOGICAL-c479t-3caa284626af615f7623cce5227df5eba9b1bc042893dde7bc2784cff8c388263</cites><orcidid>0000-0001-5308-9422 ; 0000-0001-7196-8404 ; 0000-0002-0208-7790 ; 0000-0003-2064-2396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27477856$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martínez, Ignacio A</creatorcontrib><creatorcontrib>Roldán, Édgar</creatorcontrib><creatorcontrib>Dinis, Luis</creatorcontrib><creatorcontrib>Rica, Raúl A</creatorcontrib><title>Colloidal heat engines: a review</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. Here we review recent experimental realizations of microscopic heat engines. We first revisit the theoretical framework of stochastic thermodynamics that allows to describe the fluctuating behavior of the energy fluxes that occur at mesoscopic scales, and then discuss recent implementations of the colloidal equivalents to the macroscopic Stirling, Carnot and steam engines. These small-scale motors exhibit unique features in terms of power and efficiency fluctuations that have no equivalent in the macroscopic world. We also consider a second pathway for work extraction from colloidal engines operating between active bacterial reservoirs at different temperatures, which could significantly boost the performance of passive heat engines at the mesoscale. Finally, we provide some guidance on how the work extracted from colloidal heat engines can be used to generate net particle or energy currents, proposing a new generation of experiments with colloidal systems. Stochastic heat engines can be built using colloidal particles trapped using optical tweezers.</description><subject>Bacteria</subject><subject>Colloids</subject><subject>Equivalence</subject><subject>Extraction</subject><subject>Fluctuation</subject><subject>Heat engines</subject><subject>Reservoirs</subject><subject>Stochasticity</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqN0c1LwzAYBvAgitPpxbtSbyJU89XkjbdR_IKJBxW8lTR9o5V2ncmm-N-7uTlvslNeeH48hyeEHDB6xqgw507FllLDhd0gO0xLmSqQsLm6xXOP7Mb4RqkAydQ26XEttYZM7ZAk75qmqyvbJK9oJwmOXuoRxovEJgE_avzcI1veNhH3l2-fPF1dPuY36fD--jYfDFMntZmkwlnLQSqurFcs81px4RxmnOvKZ1haU7LSUcnBiKpCXTquQTrvwQkArkSfnCx6x6F7n2KcFG0dHTaNHWE3jQUDbQwA0-vQzEgwnLI1KFdaUknnracL6kIXY0BfjEPd2vBVMFrMdy5y9XD3s_Ngho-WvdOyxWpFf4edgcMFCNGt0r-PmuXH_-XFuPLiG5dBitI</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Martínez, Ignacio A</creator><creator>Roldán, Édgar</creator><creator>Dinis, Luis</creator><creator>Rica, Raúl A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5308-9422</orcidid><orcidid>https://orcid.org/0000-0001-7196-8404</orcidid><orcidid>https://orcid.org/0000-0002-0208-7790</orcidid><orcidid>https://orcid.org/0000-0003-2064-2396</orcidid></search><sort><creationdate>2017</creationdate><title>Colloidal heat engines: a review</title><author>Martínez, Ignacio A ; Roldán, Édgar ; Dinis, Luis ; Rica, Raúl A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-3caa284626af615f7623cce5227df5eba9b1bc042893dde7bc2784cff8c388263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>Colloids</topic><topic>Equivalence</topic><topic>Extraction</topic><topic>Fluctuation</topic><topic>Heat engines</topic><topic>Reservoirs</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martínez, Ignacio A</creatorcontrib><creatorcontrib>Roldán, Édgar</creatorcontrib><creatorcontrib>Dinis, Luis</creatorcontrib><creatorcontrib>Rica, Raúl A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez, Ignacio A</au><au>Roldán, Édgar</au><au>Dinis, Luis</au><au>Rica, Raúl A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colloidal heat engines: a review</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2017</date><risdate>2017</risdate><volume>13</volume><issue>1</issue><spage>22</spage><epage>36</epage><pages>22-36</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. Here we review recent experimental realizations of microscopic heat engines. We first revisit the theoretical framework of stochastic thermodynamics that allows to describe the fluctuating behavior of the energy fluxes that occur at mesoscopic scales, and then discuss recent implementations of the colloidal equivalents to the macroscopic Stirling, Carnot and steam engines. These small-scale motors exhibit unique features in terms of power and efficiency fluctuations that have no equivalent in the macroscopic world. We also consider a second pathway for work extraction from colloidal engines operating between active bacterial reservoirs at different temperatures, which could significantly boost the performance of passive heat engines at the mesoscale. Finally, we provide some guidance on how the work extracted from colloidal heat engines can be used to generate net particle or energy currents, proposing a new generation of experiments with colloidal systems. Stochastic heat engines can be built using colloidal particles trapped using optical tweezers.</abstract><cop>England</cop><pmid>27477856</pmid><doi>10.1039/c6sm00923a</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5308-9422</orcidid><orcidid>https://orcid.org/0000-0001-7196-8404</orcidid><orcidid>https://orcid.org/0000-0002-0208-7790</orcidid><orcidid>https://orcid.org/0000-0003-2064-2396</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2017, Vol.13 (1), p.22-36
issn 1744-683X
1744-6848
language eng
recordid cdi_crossref_primary_10_1039_C6SM00923A
source Royal Society of Chemistry
subjects Bacteria
Colloids
Equivalence
Extraction
Fluctuation
Heat engines
Reservoirs
Stochasticity
title Colloidal heat engines: a review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A28%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colloidal%20heat%20engines:%20a%20review&rft.jtitle=Soft%20matter&rft.au=Mart%C3%ADnez,%20Ignacio%20A&rft.date=2017&rft.volume=13&rft.issue=1&rft.spage=22&rft.epage=36&rft.pages=22-36&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c6sm00923a&rft_dat=%3Cproquest_cross%3E1826740406%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-3caa284626af615f7623cce5227df5eba9b1bc042893dde7bc2784cff8c388263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1826740406&rft_id=info:pmid/27477856&rfr_iscdi=true