Loading…

Earth abundant perovskite oxides for low temperature CO 2 conversion

Conversion of CO 2 in a scalable technology has the potential for enormous energy and environmental impact but remains a challenge. We present several stable, earth abundant perovskite oxide materials for the reverse water gas shift chemical looping (RWGS-CL) process as a potential solution for this...

Full description

Saved in:
Bibliographic Details
Published in:Energy & environmental science 2018, Vol.11 (3), p.648-659
Main Authors: Maiti, Debtanu, Hare, Bryan J., Daza, Yolanda A., Ramos, Adela E., Kuhn, John N., Bhethanabotla, Venkat R.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conversion of CO 2 in a scalable technology has the potential for enormous energy and environmental impact but remains a challenge. We present several stable, earth abundant perovskite oxide materials for the reverse water gas shift chemical looping (RWGS-CL) process as a potential solution for this CO 2 mitigation problem. This material and process combination circumvents issues plaguing other emerging technologies, viz. poor rates of CO 2 conversion, high operation temperatures, use of precious metal catalysts, or combinations thereof. Using DFT-calculated oxygen vacancy formation energy, a key descriptor for the RWGS-CL process, we have successfully predicted several earth abundant perovskite oxides with high CO 2 conversion capability. We simultaneously achieved 100% selective CO generation from CO 2 at the highest known rates (∼160 μmoles per min per gram perovskite oxide) at record low process temperatures of 450–500 °C using lanthanum and calcium based perovskite oxides. These materials are stable over several RWGS-CL cycles, enabling industrial implementation.
ISSN:1754-5692
1754-5706
DOI:10.1039/C7EE03383D