Loading…
Plasmon-induced absorption of blind chlorophylls in photosynthetic proteins assembled on silver nanowires
We demonstrate that controlled assembly of eukaryotic photosystem I with its associated light harvesting antenna complex (PSI-LHCI) on plasmonically active silver nanowires (AgNWs) substantially improves the optical functionality of such a novel biohybrid nanostructure. By comparing fluorescence int...
Saved in:
Published in: | Nanoscale 2017-08, Vol.9 (29), p.10475-10486 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate that controlled assembly of eukaryotic photosystem I with its associated light harvesting antenna complex (PSI-LHCI) on plasmonically active silver nanowires (AgNWs) substantially improves the optical functionality of such a novel biohybrid nanostructure. By comparing fluorescence intensities measured for PSI-LHCI complex randomly oriented on AgNWs and the results obtained for the PSI-LHCI/cytochrome c
(cyt c
) bioconjugate with AgNWs we conclude that the specific binding of photosynthetic complexes with defined uniform orientation yields selective excitation of a pool of chlorophyll (Chl) molecules that are otherwise almost non-absorbing. This is remarkable, as this study shows for the first time that plasmonic excitations in metallic nanostructures can not only be used to enhance native absorption of photosynthetic pigments, but also - by employing cyt c
as the conjugation cofactor - to activate the specific Chl pools as the absorbing sites only when the uniform and well-defined orientation of PSI-LHCI with respect to plasmonic nanostructures is achieved. As absorption of PSI alone is comparatively low, our approach lends itself as an innovative approach to outperform the reported-to-date biohybrid devices with respect to solar energy conversion. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c7nr03866f |