Loading…
Gaining cycling stability of Si- and Ge-based negative Li-ion high areal capacity electrodes by using carbon nanowall scaffolds
We report an approach to stabilize the electrochemical performance of silicon- and germanium-based thin film anodes by using carbon nanowall matrices. Silicon and germanium layers were deposited onto vertically oriented carbon nanowall scaffolds and this procedure has been repeated multiple times pr...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2017, Vol.5 (34), p.18095-18100 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c231t-9987768abe1c238f3b27f4557b2d0441eae06df4680683d6f95b664758ee8ea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c231t-9987768abe1c238f3b27f4557b2d0441eae06df4680683d6f95b664758ee8ea3 |
container_end_page | 18100 |
container_issue | 34 |
container_start_page | 18095 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 5 |
creator | Mironovich, K. V. Evlashin, S. A. Bocharova, S. A. Yerdauletov, M. S. Dagesyan, S. A. Egorov, A. V. Suetin, N. V. Itkis, D. M. Krivchenko, V. A. |
description | We report an approach to stabilize the electrochemical performance of silicon- and germanium-based thin film anodes by using carbon nanowall matrices. Silicon and germanium layers were deposited onto vertically oriented carbon nanowall scaffolds and this procedure has been repeated multiple times producing multilayered structures with increased silicon and germanium areal mass loading. It was demonstrated that the areal specific capacity of multilayered anodes achieves up to 2 mA h cm
−2
without sacrificing cycling stability. Based on post-mortem SEM analysis of the electrodes we speculate that the reason for the improved cycling stability of multilayered highly loaded silicon/graphene composites is the ability to relax the mechanical stresses in the films. |
doi_str_mv | 10.1039/C7TA03509H |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C7TA03509H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_C7TA03509H</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231t-9987768abe1c238f3b27f4557b2d0441eae06df4680683d6f95b664758ee8ea3</originalsourceid><addsrcrecordid>eNpFUM1KAzEYDKJgqb34BDkLq9nNbn6OpWgrLHiw9-VL8qWNxN2SrMqefHVbFZ3LDMPMHIaQ65Ldlozru5XcLhlvmN6ckVnFGlbIWovzP63UJVnk_MKOUIwJrWfkcw2hD_2O2snGE-cRTIhhnOjg6XMoKPSOrrEwkNHRHncwhnekbSjC0NN92O0pJIRILRzAnnoY0Y5pcJipmehb_l6HZI7xHvrhA2Kk2YL3Q3T5ilx4iBkXvzwn24f77WpTtE_rx9WyLWzFy7HQWkkpFBgsj4by3FTS100jTeVYXZcIyITztVBMKO6E140RopaNQlQIfE5ufmZtGnJO6LtDCq-Qpq5k3em87v88_gWUhWKU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gaining cycling stability of Si- and Ge-based negative Li-ion high areal capacity electrodes by using carbon nanowall scaffolds</title><source>Royal Society of Chemistry</source><creator>Mironovich, K. V. ; Evlashin, S. A. ; Bocharova, S. A. ; Yerdauletov, M. S. ; Dagesyan, S. A. ; Egorov, A. V. ; Suetin, N. V. ; Itkis, D. M. ; Krivchenko, V. A.</creator><creatorcontrib>Mironovich, K. V. ; Evlashin, S. A. ; Bocharova, S. A. ; Yerdauletov, M. S. ; Dagesyan, S. A. ; Egorov, A. V. ; Suetin, N. V. ; Itkis, D. M. ; Krivchenko, V. A.</creatorcontrib><description>We report an approach to stabilize the electrochemical performance of silicon- and germanium-based thin film anodes by using carbon nanowall matrices. Silicon and germanium layers were deposited onto vertically oriented carbon nanowall scaffolds and this procedure has been repeated multiple times producing multilayered structures with increased silicon and germanium areal mass loading. It was demonstrated that the areal specific capacity of multilayered anodes achieves up to 2 mA h cm
−2
without sacrificing cycling stability. Based on post-mortem SEM analysis of the electrodes we speculate that the reason for the improved cycling stability of multilayered highly loaded silicon/graphene composites is the ability to relax the mechanical stresses in the films.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C7TA03509H</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2017, Vol.5 (34), p.18095-18100</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c231t-9987768abe1c238f3b27f4557b2d0441eae06df4680683d6f95b664758ee8ea3</citedby><cites>FETCH-LOGICAL-c231t-9987768abe1c238f3b27f4557b2d0441eae06df4680683d6f95b664758ee8ea3</cites><orcidid>0000-0002-8909-9021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Mironovich, K. V.</creatorcontrib><creatorcontrib>Evlashin, S. A.</creatorcontrib><creatorcontrib>Bocharova, S. A.</creatorcontrib><creatorcontrib>Yerdauletov, M. S.</creatorcontrib><creatorcontrib>Dagesyan, S. A.</creatorcontrib><creatorcontrib>Egorov, A. V.</creatorcontrib><creatorcontrib>Suetin, N. V.</creatorcontrib><creatorcontrib>Itkis, D. M.</creatorcontrib><creatorcontrib>Krivchenko, V. A.</creatorcontrib><title>Gaining cycling stability of Si- and Ge-based negative Li-ion high areal capacity electrodes by using carbon nanowall scaffolds</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>We report an approach to stabilize the electrochemical performance of silicon- and germanium-based thin film anodes by using carbon nanowall matrices. Silicon and germanium layers were deposited onto vertically oriented carbon nanowall scaffolds and this procedure has been repeated multiple times producing multilayered structures with increased silicon and germanium areal mass loading. It was demonstrated that the areal specific capacity of multilayered anodes achieves up to 2 mA h cm
−2
without sacrificing cycling stability. Based on post-mortem SEM analysis of the electrodes we speculate that the reason for the improved cycling stability of multilayered highly loaded silicon/graphene composites is the ability to relax the mechanical stresses in the films.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFUM1KAzEYDKJgqb34BDkLq9nNbn6OpWgrLHiw9-VL8qWNxN2SrMqefHVbFZ3LDMPMHIaQ65Ldlozru5XcLhlvmN6ckVnFGlbIWovzP63UJVnk_MKOUIwJrWfkcw2hD_2O2snGE-cRTIhhnOjg6XMoKPSOrrEwkNHRHncwhnekbSjC0NN92O0pJIRILRzAnnoY0Y5pcJipmehb_l6HZI7xHvrhA2Kk2YL3Q3T5ilx4iBkXvzwn24f77WpTtE_rx9WyLWzFy7HQWkkpFBgsj4by3FTS100jTeVYXZcIyITztVBMKO6E140RopaNQlQIfE5ufmZtGnJO6LtDCq-Qpq5k3em87v88_gWUhWKU</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Mironovich, K. V.</creator><creator>Evlashin, S. A.</creator><creator>Bocharova, S. A.</creator><creator>Yerdauletov, M. S.</creator><creator>Dagesyan, S. A.</creator><creator>Egorov, A. V.</creator><creator>Suetin, N. V.</creator><creator>Itkis, D. M.</creator><creator>Krivchenko, V. A.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8909-9021</orcidid></search><sort><creationdate>2017</creationdate><title>Gaining cycling stability of Si- and Ge-based negative Li-ion high areal capacity electrodes by using carbon nanowall scaffolds</title><author>Mironovich, K. V. ; Evlashin, S. A. ; Bocharova, S. A. ; Yerdauletov, M. S. ; Dagesyan, S. A. ; Egorov, A. V. ; Suetin, N. V. ; Itkis, D. M. ; Krivchenko, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231t-9987768abe1c238f3b27f4557b2d0441eae06df4680683d6f95b664758ee8ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mironovich, K. V.</creatorcontrib><creatorcontrib>Evlashin, S. A.</creatorcontrib><creatorcontrib>Bocharova, S. A.</creatorcontrib><creatorcontrib>Yerdauletov, M. S.</creatorcontrib><creatorcontrib>Dagesyan, S. A.</creatorcontrib><creatorcontrib>Egorov, A. V.</creatorcontrib><creatorcontrib>Suetin, N. V.</creatorcontrib><creatorcontrib>Itkis, D. M.</creatorcontrib><creatorcontrib>Krivchenko, V. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mironovich, K. V.</au><au>Evlashin, S. A.</au><au>Bocharova, S. A.</au><au>Yerdauletov, M. S.</au><au>Dagesyan, S. A.</au><au>Egorov, A. V.</au><au>Suetin, N. V.</au><au>Itkis, D. M.</au><au>Krivchenko, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gaining cycling stability of Si- and Ge-based negative Li-ion high areal capacity electrodes by using carbon nanowall scaffolds</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2017</date><risdate>2017</risdate><volume>5</volume><issue>34</issue><spage>18095</spage><epage>18100</epage><pages>18095-18100</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>We report an approach to stabilize the electrochemical performance of silicon- and germanium-based thin film anodes by using carbon nanowall matrices. Silicon and germanium layers were deposited onto vertically oriented carbon nanowall scaffolds and this procedure has been repeated multiple times producing multilayered structures with increased silicon and germanium areal mass loading. It was demonstrated that the areal specific capacity of multilayered anodes achieves up to 2 mA h cm
−2
without sacrificing cycling stability. Based on post-mortem SEM analysis of the electrodes we speculate that the reason for the improved cycling stability of multilayered highly loaded silicon/graphene composites is the ability to relax the mechanical stresses in the films.</abstract><doi>10.1039/C7TA03509H</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8909-9021</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2017, Vol.5 (34), p.18095-18100 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C7TA03509H |
source | Royal Society of Chemistry |
title | Gaining cycling stability of Si- and Ge-based negative Li-ion high areal capacity electrodes by using carbon nanowall scaffolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gaining%20cycling%20stability%20of%20Si-%20and%20Ge-based%20negative%20Li-ion%20high%20areal%20capacity%20electrodes%20by%20using%20carbon%20nanowall%20scaffolds&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Mironovich,%20K.%C2%A0V.&rft.date=2017&rft.volume=5&rft.issue=34&rft.spage=18095&rft.epage=18100&rft.pages=18095-18100&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C7TA03509H&rft_dat=%3Ccrossref%3E10_1039_C7TA03509H%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c231t-9987768abe1c238f3b27f4557b2d0441eae06df4680683d6f95b664758ee8ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |