Loading…
Amino acid-modified chitosan nanoparticles for Cu 2+ chelation to suppress CuO nanoparticle cytotoxicity
The extensive development and application of engineered nanoparticles (NPs) in various fields worldwide have been subjected to increasing concern due to their potential hazards to human health and the environment. Therefore, a simple, economical, and effective method for suppressing the toxicity of...
Saved in:
Published in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2017-05, Vol.5 (19), p.3521-3530 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The extensive development and application of engineered nanoparticles (NPs) in various fields worldwide have been subjected to increasing concern due to their potential hazards to human health and the environment. Therefore, a simple, economical, and effective method for suppressing the toxicity of metal-based nanomaterials is needed. In this study, glutaraldehyde-crosslinked chitosan nanoparticles (CS NPs) were prepared and further modified with lysine (Ly-CS), glutamic acid (Glu-CS), or sodium borohydride reduction (R-CS), and used to suppress cytotoxicity induced by copper oxide NPs (CuO NPs) through chelation with intracellularly released copper ions. All three kinds of CS NPs had similar sizes of ∼100 nm in a dry state and ∼200 nm in cell culture medium, as determined by scanning electron microscopy, transmission electron microscopy, and dynamic light scattering. The chelating efficiency of different CS NPs followed the order Ly-CS > Glu-CS > R-CS. The CS NPs showed minimal or no toxicity to three different cell lines (HepG2, A549, and RAW264.7 cells) at 100 μg mL
with similar cell internalization and exocytosis processes. Comparatively, RAW264.7 cells exhibited higher endocytosis and exocytosis rates, as revealed by flow cytometry and confocal laser scanning microscopy. CS NPs were found as agglomerates inside A549 cells and RAW264.7 cells, with the amount of agglomerates inside RAW264.7 cells decreasing significantly with prolonged incubation. All three CS NPs, especially Ly-CS and Glu-CS NPs, efficiently suppressed the cytotoxicity induced by CuO NPs, and reduced the intracellular level of reactive oxygen species. |
---|---|
ISSN: | 2050-750X 2050-7518 |
DOI: | 10.1039/c7tb00344g |