Loading…
The fate of O 2 in photocatalytic CO 2 reduction on TiO 2 under conditions of highest purity
Although the photocatalytic reduction of CO2 to CH4 by using H2O as the oxidant presupposes the formation of O2, it is often not included in the product analysis of most of the studies dealing with photocatalytic CO2 reduction or it is reported to be not formed at all. The present study aims to clar...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2019-07, Vol.21 (29), p.15949-15957 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c991-3c68c7e29be5475e5d693fa85afea2b5b1060d2e19a380ce2a854fdd82d492de3 |
---|---|
cites | cdi_FETCH-LOGICAL-c991-3c68c7e29be5475e5d693fa85afea2b5b1060d2e19a380ce2a854fdd82d492de3 |
container_end_page | 15957 |
container_issue | 29 |
container_start_page | 15949 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 21 |
creator | Dilla, Martin Jakubowski, Alina Ristig, Simon Strunk, Jennifer Schlögl, Robert |
description | Although the photocatalytic reduction of CO2 to CH4 by using H2O as the oxidant presupposes the formation of O2, it is often not included in the product analysis of most of the studies dealing with photocatalytic CO2 reduction or it is reported to be not formed at all. The present study aims to clarify the absence of O2 in the photocatalytic gas phase CO2 reduction on TiO2. By modifying P25-TiO2 with IrOx co-catalysts it was possible to observe photocatalytic water splitting, i.e. the formation of gaseous O2 and H2 in almost stoichiometric amounts, without the use of sacrificial agents, while bare P25-TiO2 showed no activity in H2 and O2 formation under similar reaction conditions. Investigating the effect of improved H2O oxidation properties on the photocatalytic CO2 reduction revealed that the CH4 formation on P25 from CO2 was completely inhibited as long as the H2O splitting reaction proceeded. Furthermore, we found that a certain amount of O2 is consumed under conditions of photocatalytic water oxidation. A quantification showed it to be in the same order of magnitude as the oxygen which is missing as a byproduct from photocatalytic CO2 conversion. A detailed interpretation of the results in the context of the general understanding of the photocatalytic CO2 reduction with H2O on TiO2 allows the hypothesis that P25-TiO2 undergoes a stoichiometric reaction, meaning that the CH4 formation is not based on a true catalytic cycle and runs only as long as TiO2 can consume oxygen. |
doi_str_mv | 10.1039/C8CP07765G |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C8CP07765G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31074471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c991-3c68c7e29be5475e5d693fa85afea2b5b1060d2e19a380ce2a854fdd82d492de3</originalsourceid><addsrcrecordid>eNpFkE9LxDAUxIMo7rp68QNIzkI1f5vmKEVXYWE99CiUNHmxkd22JO1hv71b1BUezGPmxxwGoVtKHijh-rEsyneiVC7XZ2hJRc4zTQpxfvpVvkBXKX0RQqik_BItOCVKCEWX6KNqAXszAu493mKGQ4eHth97a0azO4zB4nK2I7jJjqHv8PGqMFtT5yBi23cuzEGaG9rw2UIa8TDFMB6u0YU3uwQ3v7pC1ctzVb5mm-36rXzaZFZrmnGbF1YB0w1IoSRIl2vuTSGNB8Ma2VCSE8eAasMLYoEdI-GdK5gTmjngK3T_U2tjn1IEXw8x7E081JTU80L1_0JH-O4HHqZmD-6E_k3CvwFKu2AC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The fate of O 2 in photocatalytic CO 2 reduction on TiO 2 under conditions of highest purity</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Dilla, Martin ; Jakubowski, Alina ; Ristig, Simon ; Strunk, Jennifer ; Schlögl, Robert</creator><creatorcontrib>Dilla, Martin ; Jakubowski, Alina ; Ristig, Simon ; Strunk, Jennifer ; Schlögl, Robert</creatorcontrib><description>Although the photocatalytic reduction of CO2 to CH4 by using H2O as the oxidant presupposes the formation of O2, it is often not included in the product analysis of most of the studies dealing with photocatalytic CO2 reduction or it is reported to be not formed at all. The present study aims to clarify the absence of O2 in the photocatalytic gas phase CO2 reduction on TiO2. By modifying P25-TiO2 with IrOx co-catalysts it was possible to observe photocatalytic water splitting, i.e. the formation of gaseous O2 and H2 in almost stoichiometric amounts, without the use of sacrificial agents, while bare P25-TiO2 showed no activity in H2 and O2 formation under similar reaction conditions. Investigating the effect of improved H2O oxidation properties on the photocatalytic CO2 reduction revealed that the CH4 formation on P25 from CO2 was completely inhibited as long as the H2O splitting reaction proceeded. Furthermore, we found that a certain amount of O2 is consumed under conditions of photocatalytic water oxidation. A quantification showed it to be in the same order of magnitude as the oxygen which is missing as a byproduct from photocatalytic CO2 conversion. A detailed interpretation of the results in the context of the general understanding of the photocatalytic CO2 reduction with H2O on TiO2 allows the hypothesis that P25-TiO2 undergoes a stoichiometric reaction, meaning that the CH4 formation is not based on a true catalytic cycle and runs only as long as TiO2 can consume oxygen.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/C8CP07765G</identifier><identifier>PMID: 31074471</identifier><language>eng</language><publisher>England</publisher><ispartof>Physical chemistry chemical physics : PCCP, 2019-07, Vol.21 (29), p.15949-15957</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c991-3c68c7e29be5475e5d693fa85afea2b5b1060d2e19a380ce2a854fdd82d492de3</citedby><cites>FETCH-LOGICAL-c991-3c68c7e29be5475e5d693fa85afea2b5b1060d2e19a380ce2a854fdd82d492de3</cites><orcidid>0000-0002-6018-3633 ; 0000-0001-8701-9772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31074471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dilla, Martin</creatorcontrib><creatorcontrib>Jakubowski, Alina</creatorcontrib><creatorcontrib>Ristig, Simon</creatorcontrib><creatorcontrib>Strunk, Jennifer</creatorcontrib><creatorcontrib>Schlögl, Robert</creatorcontrib><title>The fate of O 2 in photocatalytic CO 2 reduction on TiO 2 under conditions of highest purity</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Although the photocatalytic reduction of CO2 to CH4 by using H2O as the oxidant presupposes the formation of O2, it is often not included in the product analysis of most of the studies dealing with photocatalytic CO2 reduction or it is reported to be not formed at all. The present study aims to clarify the absence of O2 in the photocatalytic gas phase CO2 reduction on TiO2. By modifying P25-TiO2 with IrOx co-catalysts it was possible to observe photocatalytic water splitting, i.e. the formation of gaseous O2 and H2 in almost stoichiometric amounts, without the use of sacrificial agents, while bare P25-TiO2 showed no activity in H2 and O2 formation under similar reaction conditions. Investigating the effect of improved H2O oxidation properties on the photocatalytic CO2 reduction revealed that the CH4 formation on P25 from CO2 was completely inhibited as long as the H2O splitting reaction proceeded. Furthermore, we found that a certain amount of O2 is consumed under conditions of photocatalytic water oxidation. A quantification showed it to be in the same order of magnitude as the oxygen which is missing as a byproduct from photocatalytic CO2 conversion. A detailed interpretation of the results in the context of the general understanding of the photocatalytic CO2 reduction with H2O on TiO2 allows the hypothesis that P25-TiO2 undergoes a stoichiometric reaction, meaning that the CH4 formation is not based on a true catalytic cycle and runs only as long as TiO2 can consume oxygen.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LxDAUxIMo7rp68QNIzkI1f5vmKEVXYWE99CiUNHmxkd22JO1hv71b1BUezGPmxxwGoVtKHijh-rEsyneiVC7XZ2hJRc4zTQpxfvpVvkBXKX0RQqik_BItOCVKCEWX6KNqAXszAu493mKGQ4eHth97a0azO4zB4nK2I7jJjqHv8PGqMFtT5yBi23cuzEGaG9rw2UIa8TDFMB6u0YU3uwQ3v7pC1ctzVb5mm-36rXzaZFZrmnGbF1YB0w1IoSRIl2vuTSGNB8Ma2VCSE8eAasMLYoEdI-GdK5gTmjngK3T_U2tjn1IEXw8x7E081JTU80L1_0JH-O4HHqZmD-6E_k3CvwFKu2AC</recordid><startdate>20190724</startdate><enddate>20190724</enddate><creator>Dilla, Martin</creator><creator>Jakubowski, Alina</creator><creator>Ristig, Simon</creator><creator>Strunk, Jennifer</creator><creator>Schlögl, Robert</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6018-3633</orcidid><orcidid>https://orcid.org/0000-0001-8701-9772</orcidid></search><sort><creationdate>20190724</creationdate><title>The fate of O 2 in photocatalytic CO 2 reduction on TiO 2 under conditions of highest purity</title><author>Dilla, Martin ; Jakubowski, Alina ; Ristig, Simon ; Strunk, Jennifer ; Schlögl, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c991-3c68c7e29be5475e5d693fa85afea2b5b1060d2e19a380ce2a854fdd82d492de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dilla, Martin</creatorcontrib><creatorcontrib>Jakubowski, Alina</creatorcontrib><creatorcontrib>Ristig, Simon</creatorcontrib><creatorcontrib>Strunk, Jennifer</creatorcontrib><creatorcontrib>Schlögl, Robert</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dilla, Martin</au><au>Jakubowski, Alina</au><au>Ristig, Simon</au><au>Strunk, Jennifer</au><au>Schlögl, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The fate of O 2 in photocatalytic CO 2 reduction on TiO 2 under conditions of highest purity</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2019-07-24</date><risdate>2019</risdate><volume>21</volume><issue>29</issue><spage>15949</spage><epage>15957</epage><pages>15949-15957</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Although the photocatalytic reduction of CO2 to CH4 by using H2O as the oxidant presupposes the formation of O2, it is often not included in the product analysis of most of the studies dealing with photocatalytic CO2 reduction or it is reported to be not formed at all. The present study aims to clarify the absence of O2 in the photocatalytic gas phase CO2 reduction on TiO2. By modifying P25-TiO2 with IrOx co-catalysts it was possible to observe photocatalytic water splitting, i.e. the formation of gaseous O2 and H2 in almost stoichiometric amounts, without the use of sacrificial agents, while bare P25-TiO2 showed no activity in H2 and O2 formation under similar reaction conditions. Investigating the effect of improved H2O oxidation properties on the photocatalytic CO2 reduction revealed that the CH4 formation on P25 from CO2 was completely inhibited as long as the H2O splitting reaction proceeded. Furthermore, we found that a certain amount of O2 is consumed under conditions of photocatalytic water oxidation. A quantification showed it to be in the same order of magnitude as the oxygen which is missing as a byproduct from photocatalytic CO2 conversion. A detailed interpretation of the results in the context of the general understanding of the photocatalytic CO2 reduction with H2O on TiO2 allows the hypothesis that P25-TiO2 undergoes a stoichiometric reaction, meaning that the CH4 formation is not based on a true catalytic cycle and runs only as long as TiO2 can consume oxygen.</abstract><cop>England</cop><pmid>31074471</pmid><doi>10.1039/C8CP07765G</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6018-3633</orcidid><orcidid>https://orcid.org/0000-0001-8701-9772</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2019-07, Vol.21 (29), p.15949-15957 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C8CP07765G |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
title | The fate of O 2 in photocatalytic CO 2 reduction on TiO 2 under conditions of highest purity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A05%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20fate%20of%20O%202%20in%20photocatalytic%20CO%202%20reduction%20on%20TiO%202%20under%20conditions%20of%20highest%20purity&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Dilla,%20Martin&rft.date=2019-07-24&rft.volume=21&rft.issue=29&rft.spage=15949&rft.epage=15957&rft.pages=15949-15957&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/C8CP07765G&rft_dat=%3Cpubmed_cross%3E31074471%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c991-3c68c7e29be5475e5d693fa85afea2b5b1060d2e19a380ce2a854fdd82d492de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/31074471&rfr_iscdi=true |