Loading…

High current density cation-exchanged SnO 2 –CdSe/ZnSe and SnO 2 –CdSe/SnSe quantum-dot photoelectrochemical cells

Research on the combination of low and high-bandgap energy materials through an ion-mediated chemical transformation of the nanostructure of one material into another, especially metal chalcogenide quantum dot (QD) solar cells plays a very important role in the fast charge transformation process wit...

Full description

Saved in:
Bibliographic Details
Published in:New journal of chemistry 2018, Vol.42 (11), p.9028-9036
Main Authors: Naushad, Mu, Khan, M. R., Bhande, Sambhaji S., Shaikh, Shoyebmohamad F., Alfadul, S. M., Shinde, Pritamkumar V., Mane, Rajaram S.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c76D-bf6c9ceb27845078989627f595f410dd77e7c83e8c8768356994f0bf00c9bac33
cites cdi_FETCH-LOGICAL-c76D-bf6c9ceb27845078989627f595f410dd77e7c83e8c8768356994f0bf00c9bac33
container_end_page 9036
container_issue 11
container_start_page 9028
container_title New journal of chemistry
container_volume 42
creator Naushad, Mu
Khan, M. R.
Bhande, Sambhaji S.
Shaikh, Shoyebmohamad F.
Alfadul, S. M.
Shinde, Pritamkumar V.
Mane, Rajaram S.
description Research on the combination of low and high-bandgap energy materials through an ion-mediated chemical transformation of the nanostructure of one material into another, especially metal chalcogenide quantum dot (QD) solar cells plays a very important role in the fast charge transformation process with high power conversion efficiencies (PCE) by reducing surface charge recombinations. Based on a coordination chemistry approach, the present study demonstrates the importance of cation-exchange process in developing bandgap engineering of tin oxide–cadmium selenide (SnO 2 –CdSe) with zinc selenide (ZnSe) and tin selenide (SnSe) to form SnO 2 –CdSe/ZnSe and SnO 2 –CdSe/SnSe electrodes, respectively. Experimental conditions are optimized from optical and photovoltaic performances. Our best performing cation-exchange interface-modified photoelectrochemical devices, i.e. , SnO 2 –CdSe/ZnSe and SnO 2 –CdSe/SnSe have achieved improvements of 21% and 28%, respectively, in their PEC values, i.e. , 3.78% and 4.41% with remarkable current densities of 19.82 and 28.40 mA cm −2 when compared with SnO 2 –CdSe (1.63% and 9.74 mA cm −2 ). This is due to (a) the fast transfer of photo-generated electrons from the CdSe QD sensitizer to SnO 2 photoanode by engineering a synergistically favourable band gap and (b) mitigation of a reverse photogenerated electron flow in the presence of a high band gap buffer ZnSe/SnSe layer, which would otherwise cause excessive recombinations. A simple cation-exchange interface modification process can, in general, pave the way for improving the performance of QD-based solar cells.
doi_str_mv 10.1039/C8NJ01409D
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C8NJ01409D</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_C8NJ01409D</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76D-bf6c9ceb27845078989627f595f410dd77e7c83e8c8768356994f0bf00c9bac33</originalsourceid><addsrcrecordid>eNpdkL1OwzAURi0EEqWw8ASekUztxPHPiFJoQRUd0oklcm5umqDUKYmL6MY78IY8CVQgITF9n85whkPIpeDXgsd2kprHBy4kt9MjMhKxssxGShx_fyEl44lUp-RsGJ45F0IrMSKv82ZdU9j1PfpAS_RDE_YUXGg6z_ANaufXWNLML2lEP98_0jLDyZPPkDr_H2cH_LJzPuw2rOwC3dZd6LBFCH0HNW4acC0FbNvhnJxUrh3w4nfHZHV3u0rnbLGc3ac3CwZaTVlRKbCARaSNTLg21lgV6SqxSSUFL0utUYOJ0YDRysSJslZWvKg4B1s4iOMxufrRQt8NQ49Vvu2bjev3ueD5IVj-Fyz-Ao64X1E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High current density cation-exchanged SnO 2 –CdSe/ZnSe and SnO 2 –CdSe/SnSe quantum-dot photoelectrochemical cells</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Naushad, Mu ; Khan, M. R. ; Bhande, Sambhaji S. ; Shaikh, Shoyebmohamad F. ; Alfadul, S. M. ; Shinde, Pritamkumar V. ; Mane, Rajaram S.</creator><creatorcontrib>Naushad, Mu ; Khan, M. R. ; Bhande, Sambhaji S. ; Shaikh, Shoyebmohamad F. ; Alfadul, S. M. ; Shinde, Pritamkumar V. ; Mane, Rajaram S.</creatorcontrib><description>Research on the combination of low and high-bandgap energy materials through an ion-mediated chemical transformation of the nanostructure of one material into another, especially metal chalcogenide quantum dot (QD) solar cells plays a very important role in the fast charge transformation process with high power conversion efficiencies (PCE) by reducing surface charge recombinations. Based on a coordination chemistry approach, the present study demonstrates the importance of cation-exchange process in developing bandgap engineering of tin oxide–cadmium selenide (SnO 2 –CdSe) with zinc selenide (ZnSe) and tin selenide (SnSe) to form SnO 2 –CdSe/ZnSe and SnO 2 –CdSe/SnSe electrodes, respectively. Experimental conditions are optimized from optical and photovoltaic performances. Our best performing cation-exchange interface-modified photoelectrochemical devices, i.e. , SnO 2 –CdSe/ZnSe and SnO 2 –CdSe/SnSe have achieved improvements of 21% and 28%, respectively, in their PEC values, i.e. , 3.78% and 4.41% with remarkable current densities of 19.82 and 28.40 mA cm −2 when compared with SnO 2 –CdSe (1.63% and 9.74 mA cm −2 ). This is due to (a) the fast transfer of photo-generated electrons from the CdSe QD sensitizer to SnO 2 photoanode by engineering a synergistically favourable band gap and (b) mitigation of a reverse photogenerated electron flow in the presence of a high band gap buffer ZnSe/SnSe layer, which would otherwise cause excessive recombinations. A simple cation-exchange interface modification process can, in general, pave the way for improving the performance of QD-based solar cells.</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/C8NJ01409D</identifier><language>eng</language><ispartof>New journal of chemistry, 2018, Vol.42 (11), p.9028-9036</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76D-bf6c9ceb27845078989627f595f410dd77e7c83e8c8768356994f0bf00c9bac33</citedby><cites>FETCH-LOGICAL-c76D-bf6c9ceb27845078989627f595f410dd77e7c83e8c8768356994f0bf00c9bac33</cites><orcidid>0000-0002-9624-7985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Naushad, Mu</creatorcontrib><creatorcontrib>Khan, M. R.</creatorcontrib><creatorcontrib>Bhande, Sambhaji S.</creatorcontrib><creatorcontrib>Shaikh, Shoyebmohamad F.</creatorcontrib><creatorcontrib>Alfadul, S. M.</creatorcontrib><creatorcontrib>Shinde, Pritamkumar V.</creatorcontrib><creatorcontrib>Mane, Rajaram S.</creatorcontrib><title>High current density cation-exchanged SnO 2 –CdSe/ZnSe and SnO 2 –CdSe/SnSe quantum-dot photoelectrochemical cells</title><title>New journal of chemistry</title><description>Research on the combination of low and high-bandgap energy materials through an ion-mediated chemical transformation of the nanostructure of one material into another, especially metal chalcogenide quantum dot (QD) solar cells plays a very important role in the fast charge transformation process with high power conversion efficiencies (PCE) by reducing surface charge recombinations. Based on a coordination chemistry approach, the present study demonstrates the importance of cation-exchange process in developing bandgap engineering of tin oxide–cadmium selenide (SnO 2 –CdSe) with zinc selenide (ZnSe) and tin selenide (SnSe) to form SnO 2 –CdSe/ZnSe and SnO 2 –CdSe/SnSe electrodes, respectively. Experimental conditions are optimized from optical and photovoltaic performances. Our best performing cation-exchange interface-modified photoelectrochemical devices, i.e. , SnO 2 –CdSe/ZnSe and SnO 2 –CdSe/SnSe have achieved improvements of 21% and 28%, respectively, in their PEC values, i.e. , 3.78% and 4.41% with remarkable current densities of 19.82 and 28.40 mA cm −2 when compared with SnO 2 –CdSe (1.63% and 9.74 mA cm −2 ). This is due to (a) the fast transfer of photo-generated electrons from the CdSe QD sensitizer to SnO 2 photoanode by engineering a synergistically favourable band gap and (b) mitigation of a reverse photogenerated electron flow in the presence of a high band gap buffer ZnSe/SnSe layer, which would otherwise cause excessive recombinations. A simple cation-exchange interface modification process can, in general, pave the way for improving the performance of QD-based solar cells.</description><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkL1OwzAURi0EEqWw8ASekUztxPHPiFJoQRUd0oklcm5umqDUKYmL6MY78IY8CVQgITF9n85whkPIpeDXgsd2kprHBy4kt9MjMhKxssxGShx_fyEl44lUp-RsGJ45F0IrMSKv82ZdU9j1PfpAS_RDE_YUXGg6z_ANaufXWNLML2lEP98_0jLDyZPPkDr_H2cH_LJzPuw2rOwC3dZd6LBFCH0HNW4acC0FbNvhnJxUrh3w4nfHZHV3u0rnbLGc3ac3CwZaTVlRKbCARaSNTLg21lgV6SqxSSUFL0utUYOJ0YDRysSJslZWvKg4B1s4iOMxufrRQt8NQ49Vvu2bjev3ueD5IVj-Fyz-Ao64X1E</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Naushad, Mu</creator><creator>Khan, M. R.</creator><creator>Bhande, Sambhaji S.</creator><creator>Shaikh, Shoyebmohamad F.</creator><creator>Alfadul, S. M.</creator><creator>Shinde, Pritamkumar V.</creator><creator>Mane, Rajaram S.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9624-7985</orcidid></search><sort><creationdate>2018</creationdate><title>High current density cation-exchanged SnO 2 –CdSe/ZnSe and SnO 2 –CdSe/SnSe quantum-dot photoelectrochemical cells</title><author>Naushad, Mu ; Khan, M. R. ; Bhande, Sambhaji S. ; Shaikh, Shoyebmohamad F. ; Alfadul, S. M. ; Shinde, Pritamkumar V. ; Mane, Rajaram S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76D-bf6c9ceb27845078989627f595f410dd77e7c83e8c8768356994f0bf00c9bac33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naushad, Mu</creatorcontrib><creatorcontrib>Khan, M. R.</creatorcontrib><creatorcontrib>Bhande, Sambhaji S.</creatorcontrib><creatorcontrib>Shaikh, Shoyebmohamad F.</creatorcontrib><creatorcontrib>Alfadul, S. M.</creatorcontrib><creatorcontrib>Shinde, Pritamkumar V.</creatorcontrib><creatorcontrib>Mane, Rajaram S.</creatorcontrib><collection>CrossRef</collection><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naushad, Mu</au><au>Khan, M. R.</au><au>Bhande, Sambhaji S.</au><au>Shaikh, Shoyebmohamad F.</au><au>Alfadul, S. M.</au><au>Shinde, Pritamkumar V.</au><au>Mane, Rajaram S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High current density cation-exchanged SnO 2 –CdSe/ZnSe and SnO 2 –CdSe/SnSe quantum-dot photoelectrochemical cells</atitle><jtitle>New journal of chemistry</jtitle><date>2018</date><risdate>2018</risdate><volume>42</volume><issue>11</issue><spage>9028</spage><epage>9036</epage><pages>9028-9036</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>Research on the combination of low and high-bandgap energy materials through an ion-mediated chemical transformation of the nanostructure of one material into another, especially metal chalcogenide quantum dot (QD) solar cells plays a very important role in the fast charge transformation process with high power conversion efficiencies (PCE) by reducing surface charge recombinations. Based on a coordination chemistry approach, the present study demonstrates the importance of cation-exchange process in developing bandgap engineering of tin oxide–cadmium selenide (SnO 2 –CdSe) with zinc selenide (ZnSe) and tin selenide (SnSe) to form SnO 2 –CdSe/ZnSe and SnO 2 –CdSe/SnSe electrodes, respectively. Experimental conditions are optimized from optical and photovoltaic performances. Our best performing cation-exchange interface-modified photoelectrochemical devices, i.e. , SnO 2 –CdSe/ZnSe and SnO 2 –CdSe/SnSe have achieved improvements of 21% and 28%, respectively, in their PEC values, i.e. , 3.78% and 4.41% with remarkable current densities of 19.82 and 28.40 mA cm −2 when compared with SnO 2 –CdSe (1.63% and 9.74 mA cm −2 ). This is due to (a) the fast transfer of photo-generated electrons from the CdSe QD sensitizer to SnO 2 photoanode by engineering a synergistically favourable band gap and (b) mitigation of a reverse photogenerated electron flow in the presence of a high band gap buffer ZnSe/SnSe layer, which would otherwise cause excessive recombinations. A simple cation-exchange interface modification process can, in general, pave the way for improving the performance of QD-based solar cells.</abstract><doi>10.1039/C8NJ01409D</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9624-7985</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1144-0546
ispartof New journal of chemistry, 2018, Vol.42 (11), p.9028-9036
issn 1144-0546
1369-9261
language eng
recordid cdi_crossref_primary_10_1039_C8NJ01409D
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
title High current density cation-exchanged SnO 2 –CdSe/ZnSe and SnO 2 –CdSe/SnSe quantum-dot photoelectrochemical cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T01%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20current%20density%20cation-exchanged%20SnO%202%20%E2%80%93CdSe/ZnSe%20and%20SnO%202%20%E2%80%93CdSe/SnSe%20quantum-dot%20photoelectrochemical%20cells&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Naushad,%20Mu&rft.date=2018&rft.volume=42&rft.issue=11&rft.spage=9028&rft.epage=9036&rft.pages=9028-9036&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/C8NJ01409D&rft_dat=%3Ccrossref%3E10_1039_C8NJ01409D%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c76D-bf6c9ceb27845078989627f595f410dd77e7c83e8c8768356994f0bf00c9bac33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true