Loading…
High current density cation-exchanged SnO 2 –CdSe/ZnSe and SnO 2 –CdSe/SnSe quantum-dot photoelectrochemical cells
Research on the combination of low and high-bandgap energy materials through an ion-mediated chemical transformation of the nanostructure of one material into another, especially metal chalcogenide quantum dot (QD) solar cells plays a very important role in the fast charge transformation process wit...
Saved in:
Published in: | New journal of chemistry 2018, Vol.42 (11), p.9028-9036 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c76D-bf6c9ceb27845078989627f595f410dd77e7c83e8c8768356994f0bf00c9bac33 |
---|---|
cites | cdi_FETCH-LOGICAL-c76D-bf6c9ceb27845078989627f595f410dd77e7c83e8c8768356994f0bf00c9bac33 |
container_end_page | 9036 |
container_issue | 11 |
container_start_page | 9028 |
container_title | New journal of chemistry |
container_volume | 42 |
creator | Naushad, Mu Khan, M. R. Bhande, Sambhaji S. Shaikh, Shoyebmohamad F. Alfadul, S. M. Shinde, Pritamkumar V. Mane, Rajaram S. |
description | Research on the combination of low and high-bandgap energy materials through an ion-mediated chemical transformation of the nanostructure of one material into another, especially metal chalcogenide quantum dot (QD) solar cells plays a very important role in the fast charge transformation process with high power conversion efficiencies (PCE) by reducing surface charge recombinations. Based on a coordination chemistry approach, the present study demonstrates the importance of cation-exchange process in developing bandgap engineering of tin oxide–cadmium selenide (SnO
2
–CdSe) with zinc selenide (ZnSe) and tin selenide (SnSe) to form SnO
2
–CdSe/ZnSe and SnO
2
–CdSe/SnSe electrodes, respectively. Experimental conditions are optimized from optical and photovoltaic performances. Our best performing cation-exchange interface-modified photoelectrochemical devices,
i.e.
, SnO
2
–CdSe/ZnSe and SnO
2
–CdSe/SnSe have achieved improvements of 21% and 28%, respectively, in their PEC values,
i.e.
, 3.78% and 4.41% with remarkable current densities of 19.82 and 28.40 mA cm
−2
when compared with SnO
2
–CdSe (1.63% and 9.74 mA cm
−2
). This is due to (a) the fast transfer of photo-generated electrons from the CdSe QD sensitizer to SnO
2
photoanode by engineering a synergistically favourable band gap and (b) mitigation of a reverse photogenerated electron flow in the presence of a high band gap buffer ZnSe/SnSe layer, which would otherwise cause excessive recombinations. A simple cation-exchange interface modification process can, in general, pave the way for improving the performance of QD-based solar cells. |
doi_str_mv | 10.1039/C8NJ01409D |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C8NJ01409D</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_C8NJ01409D</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76D-bf6c9ceb27845078989627f595f410dd77e7c83e8c8768356994f0bf00c9bac33</originalsourceid><addsrcrecordid>eNpdkL1OwzAURi0EEqWw8ASekUztxPHPiFJoQRUd0oklcm5umqDUKYmL6MY78IY8CVQgITF9n85whkPIpeDXgsd2kprHBy4kt9MjMhKxssxGShx_fyEl44lUp-RsGJ45F0IrMSKv82ZdU9j1PfpAS_RDE_YUXGg6z_ANaufXWNLML2lEP98_0jLDyZPPkDr_H2cH_LJzPuw2rOwC3dZd6LBFCH0HNW4acC0FbNvhnJxUrh3w4nfHZHV3u0rnbLGc3ac3CwZaTVlRKbCARaSNTLg21lgV6SqxSSUFL0utUYOJ0YDRysSJslZWvKg4B1s4iOMxufrRQt8NQ49Vvu2bjev3ueD5IVj-Fyz-Ao64X1E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High current density cation-exchanged SnO 2 –CdSe/ZnSe and SnO 2 –CdSe/SnSe quantum-dot photoelectrochemical cells</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Naushad, Mu ; Khan, M. R. ; Bhande, Sambhaji S. ; Shaikh, Shoyebmohamad F. ; Alfadul, S. M. ; Shinde, Pritamkumar V. ; Mane, Rajaram S.</creator><creatorcontrib>Naushad, Mu ; Khan, M. R. ; Bhande, Sambhaji S. ; Shaikh, Shoyebmohamad F. ; Alfadul, S. M. ; Shinde, Pritamkumar V. ; Mane, Rajaram S.</creatorcontrib><description>Research on the combination of low and high-bandgap energy materials through an ion-mediated chemical transformation of the nanostructure of one material into another, especially metal chalcogenide quantum dot (QD) solar cells plays a very important role in the fast charge transformation process with high power conversion efficiencies (PCE) by reducing surface charge recombinations. Based on a coordination chemistry approach, the present study demonstrates the importance of cation-exchange process in developing bandgap engineering of tin oxide–cadmium selenide (SnO
2
–CdSe) with zinc selenide (ZnSe) and tin selenide (SnSe) to form SnO
2
–CdSe/ZnSe and SnO
2
–CdSe/SnSe electrodes, respectively. Experimental conditions are optimized from optical and photovoltaic performances. Our best performing cation-exchange interface-modified photoelectrochemical devices,
i.e.
, SnO
2
–CdSe/ZnSe and SnO
2
–CdSe/SnSe have achieved improvements of 21% and 28%, respectively, in their PEC values,
i.e.
, 3.78% and 4.41% with remarkable current densities of 19.82 and 28.40 mA cm
−2
when compared with SnO
2
–CdSe (1.63% and 9.74 mA cm
−2
). This is due to (a) the fast transfer of photo-generated electrons from the CdSe QD sensitizer to SnO
2
photoanode by engineering a synergistically favourable band gap and (b) mitigation of a reverse photogenerated electron flow in the presence of a high band gap buffer ZnSe/SnSe layer, which would otherwise cause excessive recombinations. A simple cation-exchange interface modification process can, in general, pave the way for improving the performance of QD-based solar cells.</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/C8NJ01409D</identifier><language>eng</language><ispartof>New journal of chemistry, 2018, Vol.42 (11), p.9028-9036</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76D-bf6c9ceb27845078989627f595f410dd77e7c83e8c8768356994f0bf00c9bac33</citedby><cites>FETCH-LOGICAL-c76D-bf6c9ceb27845078989627f595f410dd77e7c83e8c8768356994f0bf00c9bac33</cites><orcidid>0000-0002-9624-7985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Naushad, Mu</creatorcontrib><creatorcontrib>Khan, M. R.</creatorcontrib><creatorcontrib>Bhande, Sambhaji S.</creatorcontrib><creatorcontrib>Shaikh, Shoyebmohamad F.</creatorcontrib><creatorcontrib>Alfadul, S. M.</creatorcontrib><creatorcontrib>Shinde, Pritamkumar V.</creatorcontrib><creatorcontrib>Mane, Rajaram S.</creatorcontrib><title>High current density cation-exchanged SnO 2 –CdSe/ZnSe and SnO 2 –CdSe/SnSe quantum-dot photoelectrochemical cells</title><title>New journal of chemistry</title><description>Research on the combination of low and high-bandgap energy materials through an ion-mediated chemical transformation of the nanostructure of one material into another, especially metal chalcogenide quantum dot (QD) solar cells plays a very important role in the fast charge transformation process with high power conversion efficiencies (PCE) by reducing surface charge recombinations. Based on a coordination chemistry approach, the present study demonstrates the importance of cation-exchange process in developing bandgap engineering of tin oxide–cadmium selenide (SnO
2
–CdSe) with zinc selenide (ZnSe) and tin selenide (SnSe) to form SnO
2
–CdSe/ZnSe and SnO
2
–CdSe/SnSe electrodes, respectively. Experimental conditions are optimized from optical and photovoltaic performances. Our best performing cation-exchange interface-modified photoelectrochemical devices,
i.e.
, SnO
2
–CdSe/ZnSe and SnO
2
–CdSe/SnSe have achieved improvements of 21% and 28%, respectively, in their PEC values,
i.e.
, 3.78% and 4.41% with remarkable current densities of 19.82 and 28.40 mA cm
−2
when compared with SnO
2
–CdSe (1.63% and 9.74 mA cm
−2
). This is due to (a) the fast transfer of photo-generated electrons from the CdSe QD sensitizer to SnO
2
photoanode by engineering a synergistically favourable band gap and (b) mitigation of a reverse photogenerated electron flow in the presence of a high band gap buffer ZnSe/SnSe layer, which would otherwise cause excessive recombinations. A simple cation-exchange interface modification process can, in general, pave the way for improving the performance of QD-based solar cells.</description><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkL1OwzAURi0EEqWw8ASekUztxPHPiFJoQRUd0oklcm5umqDUKYmL6MY78IY8CVQgITF9n85whkPIpeDXgsd2kprHBy4kt9MjMhKxssxGShx_fyEl44lUp-RsGJ45F0IrMSKv82ZdU9j1PfpAS_RDE_YUXGg6z_ANaufXWNLML2lEP98_0jLDyZPPkDr_H2cH_LJzPuw2rOwC3dZd6LBFCH0HNW4acC0FbNvhnJxUrh3w4nfHZHV3u0rnbLGc3ac3CwZaTVlRKbCARaSNTLg21lgV6SqxSSUFL0utUYOJ0YDRysSJslZWvKg4B1s4iOMxufrRQt8NQ49Vvu2bjev3ueD5IVj-Fyz-Ao64X1E</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Naushad, Mu</creator><creator>Khan, M. R.</creator><creator>Bhande, Sambhaji S.</creator><creator>Shaikh, Shoyebmohamad F.</creator><creator>Alfadul, S. M.</creator><creator>Shinde, Pritamkumar V.</creator><creator>Mane, Rajaram S.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9624-7985</orcidid></search><sort><creationdate>2018</creationdate><title>High current density cation-exchanged SnO 2 –CdSe/ZnSe and SnO 2 –CdSe/SnSe quantum-dot photoelectrochemical cells</title><author>Naushad, Mu ; Khan, M. R. ; Bhande, Sambhaji S. ; Shaikh, Shoyebmohamad F. ; Alfadul, S. M. ; Shinde, Pritamkumar V. ; Mane, Rajaram S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76D-bf6c9ceb27845078989627f595f410dd77e7c83e8c8768356994f0bf00c9bac33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naushad, Mu</creatorcontrib><creatorcontrib>Khan, M. R.</creatorcontrib><creatorcontrib>Bhande, Sambhaji S.</creatorcontrib><creatorcontrib>Shaikh, Shoyebmohamad F.</creatorcontrib><creatorcontrib>Alfadul, S. M.</creatorcontrib><creatorcontrib>Shinde, Pritamkumar V.</creatorcontrib><creatorcontrib>Mane, Rajaram S.</creatorcontrib><collection>CrossRef</collection><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naushad, Mu</au><au>Khan, M. R.</au><au>Bhande, Sambhaji S.</au><au>Shaikh, Shoyebmohamad F.</au><au>Alfadul, S. M.</au><au>Shinde, Pritamkumar V.</au><au>Mane, Rajaram S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High current density cation-exchanged SnO 2 –CdSe/ZnSe and SnO 2 –CdSe/SnSe quantum-dot photoelectrochemical cells</atitle><jtitle>New journal of chemistry</jtitle><date>2018</date><risdate>2018</risdate><volume>42</volume><issue>11</issue><spage>9028</spage><epage>9036</epage><pages>9028-9036</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>Research on the combination of low and high-bandgap energy materials through an ion-mediated chemical transformation of the nanostructure of one material into another, especially metal chalcogenide quantum dot (QD) solar cells plays a very important role in the fast charge transformation process with high power conversion efficiencies (PCE) by reducing surface charge recombinations. Based on a coordination chemistry approach, the present study demonstrates the importance of cation-exchange process in developing bandgap engineering of tin oxide–cadmium selenide (SnO
2
–CdSe) with zinc selenide (ZnSe) and tin selenide (SnSe) to form SnO
2
–CdSe/ZnSe and SnO
2
–CdSe/SnSe electrodes, respectively. Experimental conditions are optimized from optical and photovoltaic performances. Our best performing cation-exchange interface-modified photoelectrochemical devices,
i.e.
, SnO
2
–CdSe/ZnSe and SnO
2
–CdSe/SnSe have achieved improvements of 21% and 28%, respectively, in their PEC values,
i.e.
, 3.78% and 4.41% with remarkable current densities of 19.82 and 28.40 mA cm
−2
when compared with SnO
2
–CdSe (1.63% and 9.74 mA cm
−2
). This is due to (a) the fast transfer of photo-generated electrons from the CdSe QD sensitizer to SnO
2
photoanode by engineering a synergistically favourable band gap and (b) mitigation of a reverse photogenerated electron flow in the presence of a high band gap buffer ZnSe/SnSe layer, which would otherwise cause excessive recombinations. A simple cation-exchange interface modification process can, in general, pave the way for improving the performance of QD-based solar cells.</abstract><doi>10.1039/C8NJ01409D</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9624-7985</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1144-0546 |
ispartof | New journal of chemistry, 2018, Vol.42 (11), p.9028-9036 |
issn | 1144-0546 1369-9261 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C8NJ01409D |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
title | High current density cation-exchanged SnO 2 –CdSe/ZnSe and SnO 2 –CdSe/SnSe quantum-dot photoelectrochemical cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T01%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20current%20density%20cation-exchanged%20SnO%202%20%E2%80%93CdSe/ZnSe%20and%20SnO%202%20%E2%80%93CdSe/SnSe%20quantum-dot%20photoelectrochemical%20cells&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Naushad,%20Mu&rft.date=2018&rft.volume=42&rft.issue=11&rft.spage=9028&rft.epage=9036&rft.pages=9028-9036&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/C8NJ01409D&rft_dat=%3Ccrossref%3E10_1039_C8NJ01409D%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c76D-bf6c9ceb27845078989627f595f410dd77e7c83e8c8768356994f0bf00c9bac33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |