Loading…
Template assisted preparation of high surface area macroporous supports with uniform and tunable nanocrystal loadings
The incorporation of catalytic nanocrystals into macroporous support materials has been very attractive due to their increased catalyst mass activity. This increase in catalytic efficiency is attributed in part to the increased surface area to volume ratio of the catalysts and the use of complementa...
Saved in:
Published in: | Nanoscale 2019-01, Vol.11 (4), p.1937-1948 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The incorporation of catalytic nanocrystals into macroporous support materials has been very attractive due to their increased catalyst mass activity. This increase in catalytic efficiency is attributed in part to the increased surface area to volume ratio of the catalysts and the use of complementary support materials that can enhance their catalytic activity and stability. A uniform and tunable coating of nanocrystals on porous matrices can be difficult to achieve with some techniques such as electrodeposition. More sophisticated techniques for preparing uniform nanocrystal coatings include atomic layer deposition, but it can be difficult to reproduce these processes at commercial scales required for preparing catalyst materials. In this study, catalytic nanocrystals supported on three dimensional (3D) porous structures were prepared. The demonstrated technique utilized scalable approaches for achieving a uniform surface coverage of catalysts through the use of polymeric sacrificial templates. This template assisted technique was demonstrated with a good control over the surface coverage of catalysts, support material composition, and porosities of the support material. A series of regular porous supports were each prepared with a uniform coating of nanocrystals, such as NaYF
4
nanocrystals supported by a porous 3D lattice of Ti
1−
x
Si
x
O
2
, Pt nanocrystals on a 3D porous support of TiO
2
, Pd nanocrystals on Ni nanobowls, and Pt nanocrystals on 3D assemblies of Au/TiO
2
nanobowls. The template assisted preparation of high surface area macroporous supports could be further utilized for optimizing the use of catalytic materials in chemical, electrochemical, and photochemical reactions through increasing their catalytic efficiency and stability.
The preparation of nanocrystals coated macroporous supports with tunable compositions, catalyst loading densities, and feature dimensions. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c8nr07762b |