Loading…
Tetrathiafulvalene-calix[4]pyrrole: a versatile synthetic receptor for electron-deficient planar and spherical guests
The first tetrakis-tetrathiafulvalene-calix[4]pyrrole (TTF-C[4]P) was reported in 2004. Early on it and related π-extended TTF-C[4]Ps were found to function as both anion receptors and as hosts for planar electron deficient neutral guests, including nitroaromatic explosives. Anion binding was found...
Saved in:
Published in: | Organic & biomolecular chemistry 2019-03, Vol.17 (1), p.2594-2613 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The first tetrakis-tetrathiafulvalene-calix[4]pyrrole (TTF-C[4]P) was reported in 2004. Early on it and related π-extended TTF-C[4]Ps were found to function as both anion receptors and as hosts for planar electron deficient neutral guests, including nitroaromatic explosives. Anion binding was found to occur with a 1 : 1 binding stoichiometry and to stabilise the cone C[4]P conformation, whereas planar electron deficient guests were bound in a cooperative 1 : 2 fashion to the 1,3-alternate conformer. Addition of strongly complexing anions was found to trigger release of the electron deficient guests concurrent with a conformational change to the cone form. Subsequent studies led to the discovery of anion-induced complexation with C
60
, and the finding that the resulting complexes would support fast photoinduced electron transfer events. Synthetic advances then led to the preparation of nonsymmetric TTF-C[4]Ps where a single moiety organises the receptor in either the 1,3-alternate conformation or the partial cone conformation, thus modifying both selectivity and sensitivity. TTF-C[4]P-based stimulus responsive systems, that rely on anions and cations as controlling inputs, have also been developed and studied in recent years. This review provides a summary of TTF-C[4]P-related chemistry.
The chemistry of tetrathiafulvalene-calix[4]pyrrole is reviewed with focus on conformational behavior, receptor properties and ionically controlled electron transfer processes. |
---|---|
ISSN: | 1477-0520 1477-0539 |
DOI: | 10.1039/c8ob02514b |