Loading…
A cellular automaton for modeling non-trivial biomembrane ruptures
A novel cellular automaton (CA) for simulating biological membrane rupture is proposed. Constructed via simple rules governing deformation, tension, and fracture, the CA incorporates ideas from standard percolation models and bond-based fracture methods. The model is demonstrated by comparing simula...
Saved in:
Published in: | Soft matter 2019-05, Vol.15 (2), p.4178-4186 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c508t-8e0d9bb616b24c57de1e2a769e0ea3267fc8ef8a4446fa998cb96ca4a95bcfa33 |
---|---|
cites | cdi_FETCH-LOGICAL-c508t-8e0d9bb616b24c57de1e2a769e0ea3267fc8ef8a4446fa998cb96ca4a95bcfa33 |
container_end_page | 4186 |
container_issue | 2 |
container_start_page | 4178 |
container_title | Soft matter |
container_volume | 15 |
creator | Gupta, Abhay Gözen, Irep Taylor, Michael |
description | A novel cellular automaton (CA) for simulating biological membrane rupture is proposed. Constructed
via
simple rules governing deformation, tension, and fracture, the CA incorporates ideas from standard percolation models and bond-based fracture methods. The model is demonstrated by comparing simulations with experimental results of a double bilayer lipid membrane expanding on a solid substrate. Results indicate that the CA can capture non-trivial rupture morphologies such as floral patterns and the saltatory dynamics of fractal avalanches observed in experiments. Moreover, the CA provides insight into the poorly understood role of inter-layer adhesion, supporting the hypothesis that the density of adhesion sites governs rupture morphology.
A cellular automaton capturing experimentally observed floral and fractal avalanche rupture morphologies in self-spreading double lipid bilayers. |
doi_str_mv | 10.1039/c8sm02032a |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C8SM02032A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232092256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-8e0d9bb616b24c57de1e2a769e0ea3267fc8ef8a4446fa998cb96ca4a95bcfa33</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1ERUvhwh0It6pSwF9x7OOyghapiENB4maNnQk1iuPUTor492TZdrlxmtHMo0ejeQl5wehbRoV553WJlFPB4RE5Ya2UtdJSPz704vsxeVrKT0qFlkw9IceCUcVbzU7I-03lcRiWAXIFy5wizGms-pSrmDocwvijGtNYzzncBRgqF1LE6DKMWOVlmpeM5Rk56mEo-Py-npJvHz983V7WV18uPm03V7VvqJ5rjbQzzimmHJe-aTtkyKFVBimC4KrtvcZeg5RS9WCM9s4oDxJM43wPQpyS6723_MJpcXbKIUL-bRMEu56BkP2N9TcwRMzFFrTQa-W1prbj4KzsEK0xgltNEdFruY531td7q8-hzGG0Y8pgGdUNt20rOVuJsz0x5XS7YJltDGX3tPUJaSmWc8Gp4bxRK3r-IEulZOwPRzJqd1nZrb7-_DerzQq_uvcuLmJ3QB_CWYE3eyAXf9j-C9tOXb8yL__HiD9AsqSO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232092256</pqid></control><display><type>article</type><title>A cellular automaton for modeling non-trivial biomembrane ruptures</title><source>NORA - Norwegian Open Research Archives</source><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Gupta, Abhay ; Gözen, Irep ; Taylor, Michael</creator><creatorcontrib>Gupta, Abhay ; Gözen, Irep ; Taylor, Michael</creatorcontrib><description>A novel cellular automaton (CA) for simulating biological membrane rupture is proposed. Constructed
via
simple rules governing deformation, tension, and fracture, the CA incorporates ideas from standard percolation models and bond-based fracture methods. The model is demonstrated by comparing simulations with experimental results of a double bilayer lipid membrane expanding on a solid substrate. Results indicate that the CA can capture non-trivial rupture morphologies such as floral patterns and the saltatory dynamics of fractal avalanches observed in experiments. Moreover, the CA provides insight into the poorly understood role of inter-layer adhesion, supporting the hypothesis that the density of adhesion sites governs rupture morphology.
A cellular automaton capturing experimentally observed floral and fractal avalanche rupture morphologies in self-spreading double lipid bilayers.</description><identifier>ISSN: 1744-683X</identifier><identifier>ISSN: 1744-6848</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c8sm02032a</identifier><identifier>PMID: 31062781</identifier><language>eng</language><publisher>England</publisher><ispartof>Soft matter, 2019-05, Vol.15 (2), p.4178-4186</ispartof><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-8e0d9bb616b24c57de1e2a769e0ea3267fc8ef8a4446fa998cb96ca4a95bcfa33</citedby><cites>FETCH-LOGICAL-c508t-8e0d9bb616b24c57de1e2a769e0ea3267fc8ef8a4446fa998cb96ca4a95bcfa33</cites><orcidid>0000-0002-3702-4191 ; 0000-0002-5379-3273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,26567,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31062781$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://research.chalmers.se/publication/510546$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Abhay</creatorcontrib><creatorcontrib>Gözen, Irep</creatorcontrib><creatorcontrib>Taylor, Michael</creatorcontrib><title>A cellular automaton for modeling non-trivial biomembrane ruptures</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>A novel cellular automaton (CA) for simulating biological membrane rupture is proposed. Constructed
via
simple rules governing deformation, tension, and fracture, the CA incorporates ideas from standard percolation models and bond-based fracture methods. The model is demonstrated by comparing simulations with experimental results of a double bilayer lipid membrane expanding on a solid substrate. Results indicate that the CA can capture non-trivial rupture morphologies such as floral patterns and the saltatory dynamics of fractal avalanches observed in experiments. Moreover, the CA provides insight into the poorly understood role of inter-layer adhesion, supporting the hypothesis that the density of adhesion sites governs rupture morphology.
A cellular automaton capturing experimentally observed floral and fractal avalanche rupture morphologies in self-spreading double lipid bilayers.</description><issn>1744-683X</issn><issn>1744-6848</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp9kU1v1DAQhi1ERUvhwh0It6pSwF9x7OOyghapiENB4maNnQk1iuPUTor492TZdrlxmtHMo0ejeQl5wehbRoV553WJlFPB4RE5Ya2UtdJSPz704vsxeVrKT0qFlkw9IceCUcVbzU7I-03lcRiWAXIFy5wizGms-pSrmDocwvijGtNYzzncBRgqF1LE6DKMWOVlmpeM5Rk56mEo-Py-npJvHz983V7WV18uPm03V7VvqJ5rjbQzzimmHJe-aTtkyKFVBimC4KrtvcZeg5RS9WCM9s4oDxJM43wPQpyS6723_MJpcXbKIUL-bRMEu56BkP2N9TcwRMzFFrTQa-W1prbj4KzsEK0xgltNEdFruY531td7q8-hzGG0Y8pgGdUNt20rOVuJsz0x5XS7YJltDGX3tPUJaSmWc8Gp4bxRK3r-IEulZOwPRzJqd1nZrb7-_DerzQq_uvcuLmJ3QB_CWYE3eyAXf9j-C9tOXb8yL__HiD9AsqSO</recordid><startdate>20190522</startdate><enddate>20190522</enddate><creator>Gupta, Abhay</creator><creator>Gözen, Irep</creator><creator>Taylor, Michael</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>3HK</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1S</scope><orcidid>https://orcid.org/0000-0002-3702-4191</orcidid><orcidid>https://orcid.org/0000-0002-5379-3273</orcidid></search><sort><creationdate>20190522</creationdate><title>A cellular automaton for modeling non-trivial biomembrane ruptures</title><author>Gupta, Abhay ; Gözen, Irep ; Taylor, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-8e0d9bb616b24c57de1e2a769e0ea3267fc8ef8a4446fa998cb96ca4a95bcfa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Abhay</creatorcontrib><creatorcontrib>Gözen, Irep</creatorcontrib><creatorcontrib>Taylor, Michael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Chalmers tekniska högskola</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Abhay</au><au>Gözen, Irep</au><au>Taylor, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A cellular automaton for modeling non-trivial biomembrane ruptures</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2019-05-22</date><risdate>2019</risdate><volume>15</volume><issue>2</issue><spage>4178</spage><epage>4186</epage><pages>4178-4186</pages><issn>1744-683X</issn><issn>1744-6848</issn><eissn>1744-6848</eissn><abstract>A novel cellular automaton (CA) for simulating biological membrane rupture is proposed. Constructed
via
simple rules governing deformation, tension, and fracture, the CA incorporates ideas from standard percolation models and bond-based fracture methods. The model is demonstrated by comparing simulations with experimental results of a double bilayer lipid membrane expanding on a solid substrate. Results indicate that the CA can capture non-trivial rupture morphologies such as floral patterns and the saltatory dynamics of fractal avalanches observed in experiments. Moreover, the CA provides insight into the poorly understood role of inter-layer adhesion, supporting the hypothesis that the density of adhesion sites governs rupture morphology.
A cellular automaton capturing experimentally observed floral and fractal avalanche rupture morphologies in self-spreading double lipid bilayers.</abstract><cop>England</cop><pmid>31062781</pmid><doi>10.1039/c8sm02032a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3702-4191</orcidid><orcidid>https://orcid.org/0000-0002-5379-3273</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2019-05, Vol.15 (2), p.4178-4186 |
issn | 1744-683X 1744-6848 1744-6848 |
language | eng |
recordid | cdi_crossref_primary_10_1039_C8SM02032A |
source | NORA - Norwegian Open Research Archives; Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
title | A cellular automaton for modeling non-trivial biomembrane ruptures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A31%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20cellular%20automaton%20for%20modeling%20non-trivial%20biomembrane%20ruptures&rft.jtitle=Soft%20matter&rft.au=Gupta,%20Abhay&rft.date=2019-05-22&rft.volume=15&rft.issue=2&rft.spage=4178&rft.epage=4186&rft.pages=4178-4186&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c8sm02032a&rft_dat=%3Cproquest_cross%3E2232092256%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-8e0d9bb616b24c57de1e2a769e0ea3267fc8ef8a4446fa998cb96ca4a95bcfa33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2232092256&rft_id=info:pmid/31062781&rfr_iscdi=true |